Polymer-based carriers for ophthalmic drug delivery

Journal of Controlled Release - Tập 285 - Trang 106-141 - 2018
Julieta C. Imperiale1, Gabriela Beatriz Acosta1, Alejandro Sosnik2
1CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
2Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Robinson, 1993, Ocular anatomy and physiology relevant to ocular drug delivery, 29

Saettone, 1987

Hodges, 2013, Tear Film Mucins: Front Line Defenders of the Ocular Surface; Comparison with Airway and Gastrointestinal Tract Mucins, Exp. Eye Res., 117, 62, 10.1016/j.exer.2013.07.027

Järvinen, 1995, Ocular absorption following topical delivery, Adv. Drug Deliv. Rev., 16, 3, 10.1016/0169-409X(95)00010-5

Del Monte, 2011, Anatomy and physiology of cornea, J Cataract Refract Surg, 37, 588, 10.1016/j.jcrs.2010.12.037

Gaudana, 2009, Recent perspectives in ocular drug delivery, Pharm. Res., 26, 1197, 10.1007/s11095-008-9694-0

Davies, 2000, Biopharmaceutical considerations in topical ocular drug delivery, Clin. Exp. Pharmacol. Physiol., 27, 558, 10.1046/j.1440-1681.2000.03288.x

Campbell, 2012, The blood-retina barrier: tight junctions and barrier modulation, Adv. Exp. Med. Biol., 763, 70, 10.1007/978-1-4614-4711-5_3

Mannermaa, 2009, Efflux protein expression in human retinal pigment epithelium cell lines, Pharm. Res., 26, 1785, 10.1007/s11095-009-9890-6

Chapy, 2016, Blood-brain and retinal barriers show dissimilar ABC transporter impacts and concealed effect of P-glycoprotein on a novel verapamil influx carrier, Br. J. Pharmacol., 173, 497, 10.1111/bph.13376

Bauer, 2017, Assessment of P-Glycoprotein Transport Activity at the Human Blood–Retina Barrier with (R)-11C-Verapamil PET, J. Nucl. Med., 58, 678, 10.2967/jnumed.116.182147

Raghava, 2004, Periocular routes for retinal drug delivery, Expert Opin. Drug Deliv., 1, 99, 10.1517/17425247.1.1.99

Yan, 2015, Clinical research on intravitreal injection of bevacizumab in the treatment of macula lutea and retinal edema of ocular fundus disease, Pak. J. Pharm. Sci., 28, 1481

Ivanovska Adjievska, 2017, The outcome of low-frequency intravitreal bevacizumab therapy for macular edema in retinal vein occlusions, Clin. Ophthalmol., 11, 1183, 10.2147/OPTH.S137380

Maurice, 2001, Review : Practical Issues in Intravitreal Drug Delivery, J. Ocul. Pharmacol. Ther., 17, 393, 10.1089/108076801753162807

Sosnik, 2014, Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review, Prog. Polym. Sci., 39, 2030, 10.1016/j.progpolymsci.2014.07.010

Volker-Dieben, 1987, The palliative treatment of the dry eye, Doc. Ophthalmol., 67, 221, 10.1007/BF00142715

Abelson, 1981, Normal human tear pH by direct measurement, Arch. Ophthalmol., 99, 301, 10.1001/archopht.1981.03930010303017

Zignani, 1995, Topical semi-solid drug delivery: kinetics and tolerance of ophthalmic hydrogels, Adv. Drug Deliv. Rev., 16, 51, 10.1016/0169-409X(95)00015-Y

Chiang, 2001, In vitro and in vivo evaluation of an ocular delivery system of 5-fluorouracil microspheres, J. Ocul. Pharmacol. Ther., 17, 545, 10.1089/10807680152729239

Rabinovich-Guilatt, 2004, Cationic vectors in ocular drug delivery, J. Drug Target., 12, 623, 10.1080/10611860400015910

Vetten, 2014, Challenges facing sterilization and depyrogenation of nanoparticles: Effects on structural stability and biomedical applications, Nanomed. Nanotechnol. Biol. Med., 10, 1391, 10.1016/j.nano.2014.03.017

Pignatello, 2002, Ocular tolerability of Eudragit RS100® and RL100® nanosuspensions as carriers for ophthalmic controlled drug delivery, J. Pharm. Sci., 91, 2636, 10.1002/jps.10227

Adibkia, 2007, Piroxicam nanoparticles for ocular delivery: Physicochemical characterization and implementation in endotoxin-induced uveitis, J. Drug Target., 15, 407, 10.1080/10611860701453125

Rathod, 2017, A novel nanoparticles impregnated ocular insert for enhanced bioavailability to posterior segment of eye: in vitro, in vivo and stability studies, Mater. Sci. Eng. C, 71, 529, 10.1016/j.msec.2016.10.017

Ludwig, 2005, The use of mucoadhesive polymers in ocular drug delivery, Adv. Drug Deliv. Rev., 57, 1595, 10.1016/j.addr.2005.07.005

Zelikin, 2016, Materials and methods for delivery of biological drugs, Nat. Chem., 8, 997, 10.1038/nchem.2629

Cui, 2013, Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment, Biomaterials, 34, 8511, 10.1016/j.biomaterials.2013.07.075

Johnson, 2009, Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea, Mol. Ther., 49, 1841

Zhu, 2014, Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance, Biomaterials, 35, 2391, 10.1016/j.biomaterials.2013.11.086

Bucolo, 2004, Eudragit RL100 nanoparticle system for the ophthalmic delivery of cloricromene, J. Pharm. Pharmacol., 841, 10.1211/0022357023835

Gupta, 2010, Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery, Nanomed. Nanotechnol. Biol Med., 6, 324, 10.1016/j.nano.2009.10.004

Moghimi, 2001, Long-circulating and target-specific nanoparticles: theory to practice, Pharmacol. Rev., 53, 283

Zimmer, 1994, Hydrocortisone delivery to healthy and inflamed eyes using a micellar polysorbate 80 solution or albumin nanoparticles, Int. J. Pharm., 110, 211, 10.1016/0378-5173(94)90243-7

Diepold, 2000, Distribution of poly-hexyl-2-cyano- [ 3 -14 C ] acrylate nanoparticles in healthy and chronically inflamed rabbit eyes, Int. J. Pharm., 54, 149, 10.1016/0378-5173(89)90334-7

Qaddoumi, 2004, The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers, Pharm. Res., 21, 641, 10.1023/B:PHAM.0000022411.47059.76

Zorzi, 2011, Hybrid nanoparticle design based on cationized gelatin and the polyanions dextran sulfate and chondroitin sulfate for ocular gene therapy, Macromol. Biosci., 11, 905, 10.1002/mabi.201100005

Liu, 2008, Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation, J. Mater. Sci. Mater. Med., 19, 3365, 10.1007/s10856-008-3486-2

Jay, 2009, Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking, J. Control. Release, 134, 26, 10.1016/j.jconrel.2008.10.019

Ibrahim, 2015, Natural bioadhesive biodegradable nanoparticle-based topical ophthalmic formulations for management of glaucoma, Transl. Vis. Sci. Technol., 4, 12, 10.1167/tvst.4.3.12

Silva, 2013, Chitosan nanoparticles for daptomycin delivery in ocular treatment of bacterial endophthalmitis, Drug Deliv., 7544, 1

Hafner, 2015, Evaluation of cationic nanosystems with melatonin using an eye-related bioavailability prediction model, Eur. J. Pharm. Sci., 75, 142, 10.1016/j.ejps.2015.04.003

da Silva, 2016, Chitosan-based nanoparticles for rosmarinic acid ocular delivery-in vitro tests, Int. J. Biol. Macromol., 84, 112, 10.1016/j.ijbiomac.2015.11.070

De Campos, 2004, Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity, Pharm. Res., 21, 803, 10.1023/B:PHAM.0000026432.75781.cb

De Salamanca, 2006, Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance, Investig. Ophthalmol. Vis. Sci., 47, 1416, 10.1167/iovs.05-0495

Wassmer, 2013, Chitosan microparticles for delivery of proteins to the retina, Acta Biomater. [Internet], 9, 7855, 10.1016/j.actbio.2013.04.025

Upadhayay, 2016, Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: Optimization, ocular irritancy and corneal toxicity, Iran. J. Pharm. Res., 15, 3

Fathalla, 2016, Formulation and corneal permeation of ketorolac tromethamine-loaded chitosan nanoparticles, Drug Dev. Ind. Pharm., 42, 514, 10.3109/03639045.2015.1081236

Katiyar, 2014, In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma, Carbohydr. Polym., 102, 117, 10.1016/j.carbpol.2013.10.079

Natesan, 2017, Co-encapsulated resveratrol and quercetin in chitosan and peg modified chitosan nanoparticles: for efficient intra ocular pressure reduction, Int. J. Biol. Macromol., 104, 1837, 10.1016/j.ijbiomac.2017.04.117

Genta, 1997, Bioadhesive microspheres for ophthalmic administration of acyclovir, J. Pharm. Pharmacol., 49, 737, 10.1111/j.2042-7158.1997.tb06103.x

De Campos, 2001, Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A, Int. J. Pharm., 224, 159, 10.1016/S0378-5173(01)00760-8

Ibrahim, 2016, Stability and ocular pharmacokinetics of celecoxib-loaded nanoparticles topical ophthalmic formulations, J. Pharm. Sci., 105, 3691, 10.1016/j.xphs.2016.09.019

Pandian, 2017, Resveratrol loaded pegylated chitosan nanoparticles: for efficient ocular delivery, IET Nanobiotechnol., 11, 32, 10.1049/iet-nbt.2016.0069

Zhao, 2017, Development of timolol-loaded galactosylated chitosan nanoparticles and evaluation of their potential for ocular drug delivery, AAPS PharmSciTech, 18, 997, 10.1208/s12249-016-0669-x

Zambito, 2006, Effects of N-trimethylchitosan on transcellular and paracellular transcorneal drug transport, Eur. J. Pharm. Biopharm., 64, 16, 10.1016/j.ejpb.2006.01.004

Rassu, 2009, New chitosan derivatives for the preparation of rokitamycin loaded microspheres designed for ocular or nasal administration, J. Pharm. Sci., 98, 4852, 10.1002/jps.21751

Fabiano, 2015, Mucoadhesive nano-sized supramolecular assemblies for improved pre-corneal drug residence time, Drug Dev. Ind. Pharm., 41, 2069, 10.3109/03639045.2015.1066798

Zambito, 2010, Thiolated quaternary ammonium-chitosan conjugates for enhanced precorneal retention, transcorneal permeation and intraocular absorption of dexamethasone, Eur. J. Pharm. Biopharm., 75, 194, 10.1016/j.ejpb.2010.02.006

Tuovinen, 2004, Starch acetate microparticles for drug delivery into retinal pigment epithelium — in vitro study, J. Control. Release, 98, 407, 10.1016/j.jconrel.2004.05.016

Kaur, 2012, Carboxymethyl tamarind kernel polysaccharide nanoparticles for ophthalmic drug delivery, Int. J. Biol. Macromol., 50, 833, 10.1016/j.ijbiomac.2011.11.017

Vandervoort, 2004, Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use, Eur. J. Pharm. Biopharm., 57, 251, 10.1016/S0939-6411(03)00187-5

Zhang, 2013, A nanocomposite contact lens for the delivery of hydrophilic protein drugs, J. Mater. Chem. B, 1, 4388, 10.1039/c3tb20391c

Tseng, 2013, Cationic gelatin nanoparticles for drug delivery to the ocular surface: in vitro and in vivo evaluation, J. Nanomater., 2013, 1, 10.1155/2013/238351

Leucuţa, 1989, The kinetics of in vitro release and the pharmacokinetics of miotic response in rabbits of gelatin and albumin microspheres with pilocarpine, Int. J. Pharm., 54, 71, 10.1016/0378-5173(89)90167-1

Mahor, 2016, Moxifloxacin loaded gelatin nanoparticles for ocular delivery: formulation and in-vitro, in-vivo evaluation, J. Colloid Interface Sci., 483, 132, 10.1016/j.jcis.2016.08.018

Quinteros, 2016, Novel polymeric nanoparticles intended for ophthalmic administration of acetazolamide, J. Pharm. Sci., 105, 3183, 10.1016/j.xphs.2016.06.023

Suwannoi, 2017, Development of acyclovir-loaded albumin nanoparticles and improvement of acyclovir permeation across human corneal epithelial T cells, J. Ocul. Pharmacol. Ther., 33, 743, 10.1089/jop.2017.0057

Merodio, 2002, Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats, Biomaterials, 23, 1587, 10.1016/S0142-9612(01)00284-8

Shome, 2009, Does a nanomolecule of carboplatin injected periocularly help in attaining higher intravitreal concentrations?, Investig. Ophthalmol. Vis. Sci., 50, 5896, 10.1167/iovs.09-3914

Giunchedi, 2000, Albumin microspheres for ocular delivery of piroxicam, J. Pharm. Sci. Commun., 6, 149

Zimmer, 1995, Evaluation of pilocarpine-loaded albumin particles as controlled drug delivery systems for the eye. II. Co-administration with bioadhesive and viscous polymers, J. Control. Release, 33, 31, 10.1016/0168-3659(94)00059-4

Rathod, 2008, Albumin microspheres as an ocular delivery system for pilocarpine nitrate, Indian J. Pharm. Sci., 70, 193, 10.4103/0250-474X.41454

Lou, 2014, Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles, Int. J. Nanomedicine, 9, 2517

Lee, 2017, Apatinib-loaded nanoparticles suppress vascular endothelial growth factor-induced angiogenesis and experimental corneal neovascularization, Int. J. Nanomedicine, 12, 4813, 10.2147/IJN.S135133

Karatas, 2009, Poly (e -caprolactone) microparticles containing Levobunolol HCl prepared by a multiple emulsion (W / O / W) solvent evaporation technique: effects of some formulation parameters on microparticle characteristics, J. Microencapsul., 26, 63, 10.1080/02652040802141039

Ibrahim, 2013, Nanoparticle-based topical ophthalmic formulations for sustained celecoxib release, J. Pharm. Sci., 102, 1036, 10.1002/jps.23417

Nasr, 2016, Preparation and evaluation of contact lenses embedded with polycaprolactone-based nanoparticles for ocular drug delivery, Biomacromolecules, 17, 485, 10.1021/acs.biomac.5b01387

Katzer, 2014, Prednisolone-loaded nanocapsules as ocular drug delivery system: development, in vitro drug release and eye toxicity, J. Microencapsul., 31, 519, 10.3109/02652048.2013.879930

Lee, 2017, Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment, Nanoscale, 9, 11754, 10.1039/C7NR03221H

Calvo, 1996, Improved ocular bioavailability of indomethacin by novel ocular drug carriers, J. Pharm. Pharmacol., 48, 1147, 10.1111/j.2042-7158.1996.tb03911.x

Calvo, 1994, Study of the mechanism of interaction of poly(ϵ-caprolactone) nanocapsules with the cornea by confocal laser scanning microscopy, Int. J. Pharm., 103, 283, 10.1016/0378-5173(94)90179-1

Xu, 2013, Ocular biocompatibility and tolerance study of biodegradable polymeric micelles in the rabbit eye, Colloid Surf. B Biointerf., 112, 30, 10.1016/j.colsurfb.2013.06.047

Li, 2012, Diclofenac/biodegradable polymer micelles for ocular applications, Nanoscale, 4, 4667, 10.1039/c2nr30924f

Wu, 2016, Intravitreal injection of rapamycin-loaded polymeric micelles for inhibition of ocular inflammation in rat model, Int. J. Pharm., 513, 238, 10.1016/j.ijpharm.2016.09.013

Shi, 2015, Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac, Sci. Rep., 5

Kimura, 1994, In vitro phagocytosis of polylactide microspheres by retinal pigment epithelial cells and intracellular drug release, Curr. Eye Res., 13, 353, 10.3109/02713689409167299

Ogura, 1995, Biodegradable polymer microspheres for targeted drug delivery to the retinal pigment epithelium, Surv. Ophthalmol., 39, S17, 10.1016/S0039-6257(05)80069-4

Kadam, 2013, Influence of choroidal neovascularization and biodegradable polymeric particle size on transscleral sustained delivery of triamcinolone acetonide, Int. J. Pharm., 434, 140, 10.1016/j.ijpharm.2012.05.025

Nagarwal, 2011, Modified PLA nano in situ gel: a potential ophthalmic drug delivery system, Colloids Surf. B Biointerfaces, 86, 28, 10.1016/j.colsurfb.2011.03.023

Shelke, 2011, Intravitreal poly(l-lactide) microparticles sustain retinal and choroidal delivery of TG-0054, a hydrophilic drug intended for neovascular diseases, Drug Deliv. Transl. Res., 1, 76, 10.1007/s13346-010-0009-8

Bourges, 2003, Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles, Investig. Ophthalmol. Vis. Sci., 44, 3562, 10.1167/iovs.02-1068

Moritera, 1991, Microspheres of biodegradable polymers as a drug-delivery system in the vitreous, Investig. Ophthalmol. Vis. Sci., 32, 1785

Giarmoukakis, 2013, Biodegradable nanoparticles for controlled subconjunctival delivery of latanoprost acid: in vitro and in vivo evaluation. Preliminary results, Exp. Eye Res., 112, 29, 10.1016/j.exer.2013.04.007

Rafat, 2010, PEG – PLA microparticles for encapsulation and delivery of Tat-EGFP to retinal cells, Biomaterials, 31, 3414, 10.1016/j.biomaterials.2010.01.031

Liu, 2016, Prolonged ocular retention of mucoadhesive nanoparticle eye drop formulation enables treatment of eye diseases using significantly reduced dosage, Mol. Pharm., 13, 2897, 10.1021/acs.molpharmaceut.6b00445

Agrahari, 2016, Composite nanoformulation therapeutics for long term ocular delivery of macromolecules, Mol. Pharm., 13, 2912, 10.1021/acs.molpharmaceut.5b00828

Patel, 2016, Optimization of novel pentablock copolymer based composite formulation for sustained delivery of peptide / protein in the treatment of ocular diseases, J. Microencapsul., 33, 103, 10.3109/02652048.2015.1134685

Martínez-Sancho, 2003, Poly (d, l-lactide-co-glycolide) microspheres for long-term intravitreal delivery of aciclovir: influence of fatty and non-fatty additives, J. Microencapsul., 20, 799, 10.3109/02652040309178090

Hachicha, 2006, Preparation of vancomycin microparticles: importance of preparation parameters, Int. J. Pharm., 324, 176, 10.1016/j.ijpharm.2006.06.005

Guo, 2012, Moxifloxacin in situ gelling microparticles – bioadhesive delivery system, Results Pharma Sci., 2, 66, 10.1016/j.rinphs.2012.09.002

Osswald, 2015, Controlled and extended release of a model protein from a microsphere-hydrogel drug delivery system, Ann. Biomed. Eng., 43, 2609, 10.1007/s10439-015-1314-7

Turturro, 2013, Sustained release of matrix metalloproteinase-3 to trabecular meshwork cells using biodegradable plga microparticles, Mol. Pharm., 10, 3023, 10.1021/mp4001052

Zhai, 2015, PLGA/alginate composite microspheres for hydrophilic protein delivery, Mater. Sci. Eng. C, 56, 251, 10.1016/j.msec.2015.06.015

Davda, 2002, Characterization of nanoparticle uptake by endothelial cells, Int. J. Pharm., 233, 51, 10.1016/S0378-5173(01)00923-1

Yang, 2016, Nanoparticle-based topical ophthalmic gel formulation for sustained release of hydrocortisone butyrate, AAPS PharmSciTech, 17, 294, 10.1208/s12249-015-0354-5

Yang, 2016, Nanoparticle-based topical ophthalmic formulation for sustained release of stereoisomeric dipeptide prodrugs of ganciclovir, Drug Deliv., 23, 2399, 10.3109/10717544.2014.996833

Ahmed, 2017, A potential in situ gel formulation loaded with novel fabricated poly(Lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole, Int. J. Nanomedicine, 12, 1863, 10.2147/IJN.S131850

Aksungur, 2011, Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies, J. Control. Release, 151, 286, 10.1016/j.jconrel.2011.01.010

Amrite, 2006, Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage, Invest. Ophthalmol. Vis. Sci., 47, 1149, 10.1167/iovs.05-0531

Cañadas, 2016, In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration, Int. J. Pharm., 511, 719, 10.1016/j.ijpharm.2016.07.055

Vega, 2008, PLGA nanospheres for the ocular delivery of flurbiprofen: drug release and interactions, J. Pharm. Sci., 97, 5306, 10.1002/jps.21383

Sah, 2017, PLGA nanoparticles for ocular delivery of loteprednol etabonate: a corneal penetration study, Artif. Cells Nanomed. Biotechnol., 45, 1156, 10.1080/21691401.2016.1203794

Araújo, 2009, Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres, Colloids Surf. B Biointerfaces., 72, 48, 10.1016/j.colsurfb.2009.03.028

Abrego, 2014, Design of nanosuspensions and freeze-dried PLGA nanoparticles as a novel approach for ophthalmic delivery of pranoprofen, J. Pharm. Sci., 103, 3153, 10.1002/jps.24101

Singh, 2014, Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. ex vivo evaluation and pharmacodynamic study, Drug Dev. Ind. Pharm., 40, 1223, 10.3109/03639045.2013.814061

Warsi, 2014, Dorzolamide-loaded PLGA / vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits, Colloids Surf. B Biointerfaces, 122, 423, 10.1016/j.colsurfb.2014.07.004

Abrego, 2015, Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration, Eur. J. Pharm. Biopharm., 95, 261, 10.1016/j.ejpb.2015.01.026

Parra, 2015, Design and elaboration of freeze-dried PLGA nanoparticles for the transcorneal permeation of carprofen: ocular anti-inflammatory applications, Colloids Surf. B Biointerfaces, 136, 935, 10.1016/j.colsurfb.2015.10.026

Yeh, 2001, Formulation factors for preparing ocular biodegradable delivery system of 5-fluorouracil microparticles, J. Microencapsul., 18, 507, 10.1080/02652040010018100

Agnihotri, 2009, Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application, Nanomed. Nanotechnol. Biol. Med., 5, 90, 10.1016/j.nano.2008.07.003

Gupta, 2013, Nanoparticles laden in situ gel of levofloxacin for enhanced ocular retention, Drug Deliv., 20, 306, 10.3109/10717544.2013.838712

Gavini, 2004, PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification / spray-drying as the preparation method : in vitro / in vivo studies, Eur. J. Pharm. Biopharm., 57, 207, 10.1016/j.ejpb.2003.10.018

He, 2006, Cyclosporine-loaded microspheres for treatment of uveitis: in vitro characterization and in vivo pharmacokinetic study, Investig. Ophthalmol. Vis. Sci., 47, 3983, 10.1167/iovs.05-1373

Giordano, 1995, Biodegradation and tissue reaction to intravitreous biodegradable poly (d, l-lactic-co-glycolic) acid microspheres, Curr. Eye Res., 14, 761, 10.3109/02713689508995797

Ayalasomayajula, 2005, Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model, Eur. J. Pharmacol., 511, 191, 10.1016/j.ejphar.2005.02.019

Zhang, 2015, Coaxial Electrospray of Ranibizumab-Loaded Microparticles for Sustained Release of Anti- VEGF Therapies, PLoS One, 1

Bin, 2011, Mucoadhesive microparticles in a rapidly dissolving tablet for sustained drug delivery to the eye, Invest. Ophthalmol. Vis. Sci., 52, 2627, 10.1167/iovs.10-6465

Chang, 2013, Biodegradable PLGA-based drug delivery systems for modulating ocular surface disease under experimental murine dry eye, J. Clin. Exp. Ophthamol., 2, 1

Park, 2015, Mucoadhesive microparticles with a nanostructured surface for enhanced bioavailability of glaucoma drug, J. Control. Release, 220, 180, 10.1016/j.jconrel.2015.10.027

Kodjikian, 2010, Experimental intracameral injection of vancomycin microparticles in rabbits, Investig. Ophthalmol. Vis. Sci., 51, 4125, 10.1167/iovs.09-4694

Barcia, 2009, Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone, Exp. Eye Res., 89, 238, 10.1016/j.exer.2009.03.012

Pan, 2015, Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats, J. Control. Release, 201, 32, 10.1016/j.jconrel.2015.01.009

Salama, 2017, PLGA nanoparticles as subconjunctival injection for management of glaucoma, AAPS PharmSciTech, 18, 2517, 10.1208/s12249-017-0710-8

Yang, 2013, Intravitreal administration of dexamethasone-loaded PLGA-TPGS nanoparticles for the treatment of posterior segment diseases, J. Biomed. Nanotechnol., 9, 1617, 10.1166/jbn.2013.1646

Palamoor, 2013, Poly(ortho ester) nanoparticle-based targeted intraocular therapy for controlled release of hydrophilic molecules, Mol. Pharm., 10, 701, 10.1021/mp300488s

Palamoor, 2013, Synthesis, characterization and in vitro studies of celecoxib-loaded poly(ortho ester) nanoparticles targeted for intraocular drug delivery, Colloid Surf. B Biointerfaces, 112, 474, 10.1016/j.colsurfb.2013.07.039

Li, 2016, Poly(ortho ester) nanoparticles targeted for chronic intraocular diseases: ocular safety and localization after intravitreal injection, Nanotoxicology, 10, 1152, 10.1080/17435390.2016.1181808

Mandal, 2010, Sulfacetamide loaded eudragit RL100 nanosuspension with potential for ocular delivery, J. Pharm. Pharm. Sci., 13, 510, 10.18433/J3SW2T

Duarte, 2007, Preparation of acetazolamide composite microparticles by supercritical anti-solvent techniques, Int. J. Pharm., 332, 132, 10.1016/j.ijpharm.2006.09.041

Pignatello, 2006, Preparation and characterization of eudragit retard nanosuspensions for the ocular delivery of cloricromene, AAPS PharmSciTech, 7, 1, 10.1208/pt070127

Al-Kassas, 2004, Design and in vitro evaluation of gentamicin-Eudragit microspheres intended for intra-ocular administration, J. Microencapsul., 2, 71, 10.1080/02652040310001619992

Cortesi, 2007, Eudragit ® microparticles as a possible tool for ophthalmic administration of acyclovir, J. Microencapsul., 24, 445, 10.1080/02652040701374889

Duxfield, 2016, Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery for ocular drug delivery, Pharm. Dev. Technol., 21, 172, 10.3109/10837450.2015.1091839

Kesarla, 2016, Preparation and evaluation of nanoparticles loaded ophthalmic in situ gel, Drug Deliv., 23, 2363, 10.3109/10717544.2014.987333

Soltani, 2016, Design of eudragit RL nanoparticles by nanoemulsion method as carriers for ophthalmic drug delivery of ketotifen fumarate, Iran. J. Basic. Med. Sci., 19, 850

Katara, 2013, Eudragit RL 100-based nanoparticulate system of aceclofenac for ocular delivery, Colloids Surf. B Biointerfaces, 103, 455, 10.1016/j.colsurfb.2012.10.056

Morsi, 2016, Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery, Int. J. Pharm., 506, 57, 10.1016/j.ijpharm.2016.04.021

Tayel, 2013, Positively charged polymeric nanoparticle reservoirs of terbinafine hydrochloride: preclinical implications for controlled drug delivery in the aqueous humor of rabbits, AAPS PharmSciTech, 14, 782, 10.1208/s12249-013-9964-y

Khan, 2013, Development and characterization of pilocarpine loaded eudragit nanosuspensions for ocular drug delivery, J. Biomed. Nanotechnol., 9, 124, 10.1166/jbn.2013.1475

Verma, 2013, Development, in vitro and in vivo characterization of Eudragit RL 100 nanoparticles for improved ocular bioavailability of acetazolamide, Drug Deliv., 20, 269, 10.3109/10717544.2013.834417

Pignatello, 2002, Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application, Biomaterials, 23, 3247, 10.1016/S0142-9612(02)00080-7

Bhagav, 2011, Brimonidine Tartrate–Eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation, AAPS PharmSciTech, 12, 1087, 10.1208/s12249-011-9675-1

Adibkia, 2007, Inhibition of endotoxin-induced uveitis by methylprednisolone acetate nanosuspension in rabbits, J. Ocul. Pharmacol. Ther., 23, 421, 10.1089/jop.2007.0039

Başaran, 2011, Polymeric cyclosporine-A nanoparticles for ocular application, J. Biomed. Nanotechnol., 7, 714, 10.1166/jbn.2011.1325

Bucolo, 2002, Enhanced ocular anti-inflammatory activity of ibuprofen carried by an eudragit RS100 nanoparticle suspension, Ophthalmic Res., 34, 319, 10.1159/000065608

Pignatello, 2002, E udragit RS100 ® nanosuspensions for the ophthalmic controlled delivery of ibuprofen, Eur. J. Pharm. Sci., 16, 53, 10.1016/S0928-0987(02)00057-X

Das, 2010, Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery, Nanomed. Nanotechnol. Biol. Med., 6, 318, 10.1016/j.nano.2009.09.002

Ahuja, 2011, Diclofenac-loaded Eudragit S100 nanosuspension for ophthalmic delivery, J. Microencapsul., 28, 37, 10.3109/02652048.2010.523794

Zimmer, 1991, Studies on the transport pathway of PBCA nanoparticles in ocular tissues, J. Microencapsul., 8, 497, 10.3109/02652049109021873

Fresta, 2001, Ocular tolerability and in vivo bioavailability of poly (ethylene glycol) (PEG) -coated nanosphere-encapsulated acyclovir, J. Pharm. Sci., 90, 288, 10.1002/1520-6017(200103)90:3<288::AID-JPS4>3.0.CO;2-5

Fitzgerald, 1987, A γ-scintigraphic evaluation of microparticulate ophthalmic delivery systems: liposomes and nanoparticles, Int. J. Pharm., 40, 81, 10.1016/0378-5173(87)90050-0

Wood, 1985, Ocular disposition of poly-hexyl-2-cyano[3-14C]acrylate nanoparticles in the albino rabbit, Int. J. Pharm., 23, 175, 10.1016/0378-5173(85)90007-9

El-Samaligy, 1996, Ocular disposition of nanoencapsulated acyclovir and ganciclovir via intravitreal injection in rabbit's eye, Drug Deliv., 3, 93, 10.3109/10717549609031179

Losa, 1991, Improvement of ocular penetration of amikacin sulphate by association to poly(butylcyanoacrylate) nanoparticles, J. Pharm. Pharmacol., 43, 548, 10.1111/j.2042-7158.1991.tb03534.x

Desai, 2000, Pluronic® F127-based ocular delivery system containing biodegradable polyisobutylcyanoacrylate nanocapsules of pilocarpine, Drug Deliv. J. Deliv. Target Ther. Agents, 7, 201

Marchal-Heussler, 1990, Antiglaucomatous activity of betaxolol chlorhydrate sorbed onto different isobutylcyanoacrylate nanoparticle preparations, Int. J. Pharm., 58, 115, 10.1016/0378-5173(90)90248-3

De, 2004, Polycarboxylic acid nanoparticles for ophthalmic drug delivery: an ex vivo evaluation with human cornea, J. Microencapsul., 21, 841, 10.1080/02652040400008515

Durrani, 1995, Precorneal clearance of mucoadhesive microparticles from the rabbit eye, J. Phaq. Pharmacol., 47, 581, 10.1111/j.2042-7158.1995.tb06718.x

Davaran, 2015, Preparation and in vivo evaluation of in situ gel system as dual thermo- / pH-responsive nanocarriers for sustained ocular drug delivery, J. Microencapsul., 32, 511

Andrés-Guerrero, 2015, Novel biodegradable polyesteramide microspheres for controlled drug delivery in ophthalmology, J. Control. Release, 211, 105, 10.1016/j.jconrel.2015.05.279

Sensoy, 2009, Bioadhesive sulfacetamide sodium microspheres: evaluation of their effectiveness in the treatment of bacterial keratitis caused by Staphylococcus aureus and Pseudomonas aeruginosa in a rabbit model, Eur. J. Pharm. Biopharm., 72, 487, 10.1016/j.ejpb.2009.02.006

Amrite, 2005, Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration, J. Pharm. Pharmacol., 57, 1555, 10.1211/jpp.57.12.0005

Xu, 2013, Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo, J. Control. Release, 167, 76, 10.1016/j.jconrel.2013.01.018

Motwani, 2008, Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation, Eur. J. Pharm. Biopharm., 68, 513

Costa, 2015, Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin, Eur. J. Clin. Microbiol. Infect. Dis., 34, 1255, 10.1007/s10096-015-2344-7

Mi, 2002, Drug release from chitosan - alginate complex beads reinforced by a naturally occurring cross-linking agent, Carbohydr. Polym., 48, 61, 10.1016/S0144-8617(01)00212-0

Nagarwal, 2012, Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: In vitro characterization and in vivo study in rabbit eye, Eur. J. Pharm. Sci., 47, 678, 10.1016/j.ejps.2012.08.008

Shafie, 2013, Formulation and evaluation of betamethasone sodium phosphate loaded nanoparticles for ophthalmic delivery, J. Clin. Exp. Ophthalmol., 4, 1

Shinde, 2014, Design and characterization of chitosan-alginate microspheres for ocular delivery of azelastine, Pharm. Dev. Technol., 19, 813, 10.3109/10837450.2013.836217

Zhu, 2012, Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery, Mol. Vis., 18, 1973

Addo, 2015, Formulation and characterization of atropine sulfate in albumin – chitosan microparticles for in vivo ocular drug delivery, J. Pharm. Sci., 104, 1677, 10.1002/jps.24380

Addo, 2010, Formulation, characterization and testing of tetracaine hydrochloride-loaded albumin-chitosan microparticles for ocular drug delivery, J. Microencapsul., 27, 95, 10.3109/02652040903010638

Moraru, 2014, Intraocular biodistribution of intravitreal injected chitosan/gelatin nanoparticles, Romanian J. Morphol. Embryol., 55, 869

Andrei, 2015, Formulation and evaluation of cefuroxim loaded submicron particles for ophthalmic delivery, Int. J. Pharm., 493, 16, 10.1016/j.ijpharm.2015.07.053

Abdullah, 2016, Chondroitin sulfate ­ chitosan nanoparticles for ocular delivery of bromfenac sodium : Improved permeation, retention, and penetration, Int. J. Pharm. Investig., 6, 96, 10.4103/2230-973X.177823

Chaiyasan, 2015, Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery, Mol. Vis., 21, 1224

Chaiyasan, 2017, Penetration of mucoadhesive chitosan-dextran sulfate nanoparticles into the porcine cornea, Colloids Surf. B Biointerfaces, 149, 288, 10.1016/j.colsurfb.2016.10.032

Zorzi, 2011, Expression of MUC5AC in ocular surface epithelial cells using cationized gelatin nanoparticles, Mol. Pharm., 8, 1783, 10.1021/mp200155t

Parraga, 2014, Nanoparticles based on naturally-occurring biopolymers as versatile delivery platforms for delicate bioactive molecules: an application for ocular gene silencing, Int. J. Pharm., 477, 12, 10.1016/j.ijpharm.2014.09.049

Ambhore, 2016, Formulation and comparative evaluation of HPMC and water soluble chitosan-based sparfloxacin nanosuspension for ophthalmic delivery, Drug Deliv. Transl. Res., 6, 48, 10.1007/s13346-015-0262-y

Kalam, 2016, Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone, Int. J. Biol. Macromol., 89, 127, 10.1016/j.ijbiomac.2016.04.070

De La Fuente, 2008, Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy, Investig. Ophthalmol. Vis. Sci., 49, 2016, 10.1167/iovs.07-1077

Kalam, 2016, The potential application of hyaluronic acid coated chitosan nanoparticles in ocular delivery of dexamethasone, Int. J. Biol. Macromol., 89, 559, 10.1016/j.ijbiomac.2016.05.016

Fabiano, 2017, Thermosensitive hydrogel based on chitosan and its derivatives containing medicated nanoparticles for transcorneal administration of 5-fluorouracil, Int. J. Nanomedicine, 12, 633, 10.2147/IJN.S121642

Huang, 2017, Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery to the retina, Mol. Pharm., 14, 533, 10.1021/acs.molpharmaceut.6b01029

Huang, 2017, Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection, Eur. J. Pharm. Biopharm., 119, 125, 10.1016/j.ejpb.2017.06.009

Calvo, 1997, Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers, Int. J. Pharm., 153, 41, 10.1016/S0378-5173(97)00083-5

Mahaling, 2016, Understanding the influence of surface properties of nanoparticles and penetration enhancers for improving bioavailability in eye tissues in vivo, Int. J. Pharm., 501, 1, 10.1016/j.ijpharm.2016.01.053

Yousry, 2017, Studying the influence of formulation and process variables on Vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery, Eur. J. Pharm. Sci., 100, 142, 10.1016/j.ejps.2017.01.013

Nagarwal, 2010, Chitosan coated PLA nanoparticles for ophthalmic delivery: characterization, in-vitro and in-vivo study in rabbit eye, J. Biomed. Nanotechnol., 6, 648, 10.1166/jbn.2010.1168

Yoncheva, 2011, Development of mucoadhesive poly(lactide-co-glycolide) nanoparticles for ocular application, Pharm. Dev. Technol., 16, 29, 10.3109/10837450903479954

Salama, 2015, A novel method for preparing surface-modified fluocinolone acetonide loaded PLGA nanoparticles for ocular use: in vitro and in vivo evaluations, AAPS PharmSciTech, 17, 1159, 10.1208/s12249-015-0448-0

Elsaid, 2016, PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab, Mol. Pharm., 13, 2923, 10.1021/acs.molpharmaceut.6b00335

Pandit, 2017, Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation, Artif. Cells Nanomed. Biotechnol., 45, 1397, 10.1080/21691401.2016.1243545

Jain, 2011, Microscopic and spectroscopic evaluation of novel PLGA-chitosan nanoplexes as an ocular delivery system, Colloids Surf. B Biointerfaces, 82, 397, 10.1016/j.colsurfb.2010.09.010

Varshochian, 2015, Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment, J. Biomed. Mater. Res. Part A., 103, 3148, 10.1002/jbm.a.35446

Yenice, 2008, Hyaluronic acid coated poly-ε-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea, Exp. Eye Res., 87, 162, 10.1016/j.exer.2008.04.002

Ibrahim, 2010, Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy, Mol. Pharm., 7, 576, 10.1021/mp900279c

Moritera, 1994, Feasibility of drug targeting to the retinal pigment epithelium with biodegradable microspheres, Curr. Eye Res., 13, 171, 10.3109/02713689408995774

Choy, 2008, Mucoadhesive microparticles engineered for ophthalmic drug delivery, J. Phys. Chem. Solids, 69, 1533, 10.1016/j.jpcs.2007.10.043

Tataru, 2012, Microparticles based on natural and synthetic polymers for ophthalmic applications, J. Biomed. Mater. Res. Part A., 100, 1209, 10.1002/jbm.a.34069

Yandrapu, 2014, Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab, Mol. Pharm., 10, 4676, 10.1021/mp400487f

Rong, 2014, Safety evaluation of poly (lactic-co-glycolic acid)/poly (lactic-acid) microspheres through intravitreal injection in rabbits, Int. J. Nanomedicine, 9, 3057, 10.2147/IJN.S64100

Rinaudo, 2008, Main properties and current applications of some polysaccharides as biomaterials, Polym. Int., 430, 397, 10.1002/pi.2378

Nair, 2007, Biodegradable polymers as biomaterials, Prog. Polym. Sci., 32, 762, 10.1016/j.progpolymsci.2007.05.017

Kong, 2002, Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration, Polymer, 43, 6239, 10.1016/S0032-3861(02)00559-1

Rees, 1981, Polysaccharide shapes and their interactions - some recent advances, Pure Appl. Chem., 53, 1, 10.1351/pac198153010001

Pawar, 2012, Alginate derivatization: a review of chemistry, properties and applications, Biomaterials, 33, 3279, 10.1016/j.biomaterials.2012.01.007

Kuo, 2001, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties, Biomaterials, 22, 511, 10.1016/S0142-9612(00)00201-5

Drury, 2004, The tensile properties of alginate hydrogels, Biomaterials, 25, 3187, 10.1016/j.biomaterials.2003.10.002

Crow, 2006, Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber, Biopolymers, 81, 419, 10.1002/bip.20442

Gombotz, 1998, Protein release from alginate matrixes, Adv. Drug Deliv. Rev., 31, 267, 10.1016/S0169-409X(97)00124-5

Sharma, 2016, Overview of biopolymers as carriers of antiphlogistic agents for treatment of diverse ocular inflammations, Mater. Sci. Eng. C, 67, 779, 10.1016/j.msec.2016.05.060

Kang-Mieler, 2016, Extended ocular drug delivery systems for the anterior and posterior segments: biomaterial options and applications, Expert Opin. Drug. Deliv., 14, 1742

Gandhi, 2013, Alginate-based strategies for therapeutic vascularization, Ther. Deliv., 4, 327, 10.4155/tde.12.163

Shaikh, 2011, Mucoadhesive drug delivery systems, J. Pharm. Bioallied Sci., 3, 89, 10.4103/0975-7406.76478

Singh, 2010, Development and evaluation of novel polymeric nanoparticles of brimonidine tartrate, Curr. Drug Deliv., 7, 244, 10.2174/156720110791561008

Zheng, 2004, A protein delivery system: biodegradable alginate-chitosan-poly(lactic-co- glycolic acid) composite microspheres, Biochem. Biophys. Res. Commun., 323, 1321, 10.1016/j.bbrc.2004.09.007

Rowe, 2006

Draize, 1944, Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes, J. Pharmacol. Exp. Ther., 82, 377

Liu, 2006, Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin, Int. J. Pharm., 315, 12, 10.1016/j.ijpharm.2006.01.029

Fernández-Ferreiro, 2015, In vitro and in vivo ocular safety and eye surface permanence determination by direct and Magnetic Resonance Imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan, Eur. J. Pharm. Biopharm., 94, 342, 10.1016/j.ejpb.2015.06.003

INVITTOX

Orive, 2002, Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates, Biomaterials, 23, 3825, 10.1016/S0142-9612(02)00118-7

Leo, 1990, Effects of sterilization treatments on some properties of alginate solutions and gels, Biotechnol. Prog., 6, 51, 10.1021/bp00001a008

Vandenbossche, 1993, Influence of the sterilization process on alginate dispersions, J. Pharm. Pharmacol., 45, 484, 10.1111/j.2042-7158.1993.tb05582.x

Yu, 2017, Is there a cause-and-effect relationship between physicochemical properties and cell behavior of alginate-based hydrogel obtained after sterilization?, J. Mech. Behav. Biomed. Mater., 68, 134, 10.1016/j.jmbbm.2017.01.038

Brady, 2017, Optimisation of a novel glass-alginate hydrogel for the treatment of intracranial aneurysms, Carbohydr. Polym., 176, 227, 10.1016/j.carbpol.2017.08.016

Mao, 2012, The depolymerization of sodium alginate by oxidative degradation, Pharm. Dev. Technol., 17, 763, 10.3109/10837450.2011.583927

Vlasova, 2009, Study of the denaturation of human serum albumin by sodium dodecyl sulfate using the intrinsic fluorescence of albumin, J. Appl. Spectrosc., 76, 536, 10.1007/s10812-009-9227-6

Gradishar, 2006, Albumin-bound paclitaxel: a next-generation taxane, Expert. Opin. Pharmacother., 7, 1041, 10.1517/14656566.7.8.1041

Agnihotri, 2004, Recent advances on chitosan-based micro- and nanoparticles in drug delivery, J. Control. Release, 100, 5, 10.1016/j.jconrel.2004.08.010

Rowe, 2009, 159

Lehr, 1992, In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers, Int. J. Pharm., 78, 43, 10.1016/0378-5173(92)90353-4

Schipper, 1997, Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement, Pharm. Res., 14, 923, 10.1023/A:1012160102740

Behrens, 2002, Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport, Pharm. Res., 19, 1185, 10.1023/A:1019854327540

Krishnaswami, 2018, Biological macromolecules for ophthalmic drug delivery to treat ocular diseases, Int. J. Biol. Macromol., 110, 7, 10.1016/j.ijbiomac.2018.01.120

Di Colo, 2004, Effects of different N-trimethyl chitosans on in vitro/in vivo ofloxacin transcorneal permeation, J. Pharm. Sci., 93, 2851, 10.1002/jps.20197

Di Colo, 2004, Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin, Int. J. Pharm., 273, 37, 10.1016/j.ijpharm.2003.12.018

Zambito, 2007, Novel quaternary ammonium chitosan derivatives for the promotion of intraocular drug absorption, J. Drug Deliv. Sci. Technol., 17, 19, 10.1016/S1773-2247(07)50003-1

Hamman, 2003, N-Trimethyl chitosan chloride: optimum degree of quaternization for drug absorption enhancement across epithelial cells, Drug Dev. Ind. Pharm., 29, 161, 10.1081/DDC-120016724

Snyman, 2003, Evaluation of the mucoadhesive properties of N-trimethyl chitosan chloride, Drug Dev. Ind. Pharm., 29, 61, 10.1081/DDC-120016684

Bhavsar, 2017, Functionalized and graft copolymers of chitosan and its pharmaceutical applications, Expert Opin. Drug Deliv., 14, 1189, 10.1080/17425247.2017.1241230

Office of Food Additive Safety

Shi, 2006, Therapeutic potential of chitosan and its derivatives in regenerative medicine, J. Surg. Res., 133, 185, 10.1016/j.jss.2005.12.013

Temel, 1991, Tear lysozyme levels in contact lens wearers, Ann. Ophthalmol., 23, 191

Nagarwal, 2009, Polymeric nanoparticulate system: A potential approach for ocular drug delivery, J. Control. Release, 136, 2, 10.1016/j.jconrel.2008.12.018

Gelatin Manufacturers Institute of América

Young, 2005, Gelatin as a delivery vehicle for the controlled release of bioactive molecules, J. Control. Release, 109, 256, 10.1016/j.jconrel.2005.09.023

Elzoghby, 2013, Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research, J. Control. Release, 172, 1075, 10.1016/j.jconrel.2013.09.019

Bonferoni, 2004, Carrageenan-gelatin mucoadhesive systems for ion-exchange based ophthalmic delivery: in vitro and preliminary in vivo studies, Eur. J. Pharm. Biopharm., 57, 465, 10.1016/j.ejpb.2003.12.002

Salamat-Miller, 2005, The use of mucoadhesive polymers in buccal drug delivery, Adv. Drug Deliv. Rev., 57, 1666, 10.1016/j.addr.2005.07.003

Hathout, 2016, Gelatin-based particulate systems in ocular drug delivery, Pharm. Dev. Technol., 21, 379, 10.3109/10837450.2014.999786

Davidenko, 2018, Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry, J. Mater. Sci. Mater. Med., 29, 39, 10.1007/s10856-018-6047-3

Coester, 2006, In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation, Eur. J. Pharm. Biopharm., 62, 306, 10.1016/j.ejpb.2005.09.009

Gupta, 2004, Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts, J. Control. Release, 95, 197, 10.1016/j.jconrel.2003.11.006

Coester, 2000, Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake, J. Microencapsul., 17, 187, 10.1080/026520400288427

Karthikeyan, 2015, Resveratrol loaded gelatin nanoparticles synergistically inhibits cell cycle progression and constitutive NF-kappaB activation, and induces apoptosis in non-small cell lung cancer cells, Biomed Pharmacother, 70, 274, 10.1016/j.biopha.2015.02.006

Kommareddy, 2005, Gelatin nanoparticles and their biofunctionalization, 330

Wang, 2001, Evaluation of gastric mucoadhesive properties of aminated gelatin microspheres, J. Control. Release, 73, 223, 10.1016/S0168-3659(01)00288-7

Select Committee on GRAS Substances (SCOGS)

Rowe, 2009, 549

Balzus, 2017, Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium, Eur. J. Pharm. Biopharm., 115, 122, 10.1016/j.ejpb.2017.02.001

Aburahma, 2011, Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: preparation and in vitro/in vivo evaluation, AAPS PharmSciTech, 12, 1335, 10.1208/s12249-011-9701-3

Gurtler, 1995, Long-acting soluble bioadhesive ophthalmic drug insert (BODI) containing gentamicin for veterinary use: optimization and clinical investigation, J. Control. Release, 33, 231, 10.1016/0168-3659(94)00096-D

Labet, 2009, Synthesis of polycaprolactone: a review, Chem. Soc. Rev., 38, 3484, 10.1039/b820162p

Murthy, 1997

Mondal, 2016, Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges, Int. J. Polym. Mater. Polym. Biomater., 65, 255, 10.1080/00914037.2015.1103241

Sun, 2006, The in vivo degradation, absorption and excretion of PCL-based implant, Biomaterials, 27, 1735, 10.1016/j.biomaterials.2005.09.019

Lin, 2017, Drug delivery nanoparticles: toxicity comparison in retinal pigment epithelium and retinal vascular endothelial cells, Semin. Ophthalmol., 31, 1, 10.3109/08820538.2015.1114865

Garlotta, 2001, A literature review of poly(lactic acid), J. Polym. Environ., 9, 63, 10.1023/A:1020200822435

Tyler, 2016, Polylactic acid (PLA) controlled delivery carriers for biomedical applications, Adv. Drug Deliv. Rev., 107, 163, 10.1016/j.addr.2016.06.018

Jain, 2000, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices, Biomaterials, 21, 2475, 10.1016/S0142-9612(00)00115-0

Lu, 2009, Current advances in researcn and clinical applications of PLGA-based nanotechnology, Expert. Rev. Mol. Diagn., 9, 325, 10.1586/erm.09.15

Synthesis, 1995, properties of biodegradable lactic/glycolic acid polymers, 1015

Tung, 1958, The effects of molecular weight on the crystallinity of polyethylene, J. Phys. Chem., 62, 1530, 10.1021/j150570a015

Makadia, 2011, Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier, Polymers (Basel), 3, 1377, 10.3390/polym3031377

Zhang, 2014, Biodegradable polymers, 441

Qaddoumi, 2003, Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells : Role in PLGA nanoparticle endocytosis, Mol. Vis., 9, 559

Vasconcelos, 2015, Conjugation of cell-penetrating peptides with poly (lactic-co-glycolic acid) -polyethylene glycol nanoparticles improves ocular drug delivery, Int. J. Nanomedicine, 10, 609

Sabliov, 2015, Polymeric nanoparticles for food applications, 272

Nadal-nicol, 2016, Ketorolac administration attenuates retinal ganglion cell death after axonal injury, Invest. Ophthalmol. Vis. Sci., 57, 1183, 10.1167/iovs.15-18213

Heller, 2002, Poly(ortho esters): synthesis, characterization, properties and uses, Adv. Drug Deliv. Rev., 54, 1015, 10.1016/S0169-409X(02)00055-8

Heller, 2005, Ocular delivery using poly(ortho esters), Adv. Drug Deliv. Rev., 57, 2053, 10.1016/j.addr.2005.09.007

Thakral, 2013, Eudragit®: a technology evaluation, Expert Opin. Drug Deliv., 10, 131, 10.1517/17425247.2013.736962

Lin, 2001, Study of crystallization of endogenous surfactant in Eudragit NE30D-free films and its influence on drug-release properties of controlled-release diphenhydramine HCl pellets coated with Eudragit NE30D, AAPS PharmSci., 3, E14, 10.1208/ps030214

Hauptstein, 2014, Preactivated thiolated poly(methacrylic acid-co-ethyl acrylate): synthesis and evaluation of mucoadhesive potential, Eur. J. Pharm. Sci., 63, 132, 10.1016/j.ejps.2014.07.002

Li, 2015, Mannan-decorated thiolated Eudragit microspheres for targeting antigen presenting cells via nasal vaccination, Eur. J. Pharm. Sci., 80, 16, 10.1016/j.ejps.2015.09.014

Quan, 2008, pH-sensitive and mucoadhesive thiolated Eudragit-coated chitosan microspheres, Int. J. Pharm., 359, 205, 10.1016/j.ijpharm.2008.04.003

Zhang, 2012, Thiolated Eudragit nanoparticles for oral insulin delivery: preparation, characterization and in vivo evaluation, Int. J. Pharm., 436, 341, 10.1016/j.ijpharm.2012.06.054

Obermeier, 2011, Partially quarternized amino functional poly(methacrylate) terpolymers: versatile drug permeability modifiers, Biomacromolecules, 12, 425, 10.1021/bm1012037

Harmia, 1986, A solid colloidal drug delivery system for the eye: encapsulation of pilocarpin in nanoparticles, J. Microencapsul., 3, 3, 10.3109/02652048609049580

King, 1999, Tissue adhesives: a new method of wound repair, Nurs. Pract., 24, 73, 10.1097/00006205-199910000-00005

Sulheim, 2016, Cellular uptake and intracellular degradation of poly(alkyl cyanoacrylate) nanoparticles, J. Nanobiotechnol., 14, 10.1186/s12951-015-0156-7

Graf, 2009, Poly(alkycyanoacrylate) nanoparticles for enhanced delivery of therapeutics – is there real potential?, Expert Opin. Drug Deliv., 6, 371, 10.1517/17425240902870413

Nicolas, 2009, Synthesis of poly (alkyl cyanoacrylate) -based colloidal nanomedicines, Wiley Interdisc. Rev. Nanomed. Nanobiotechnol., 1, 111, 10.1002/wnan.15

Müller, 1990, In vitro model for the degradation of alkylcyanoacrylate nanoparticles, Biomaterials, 11, 590, 10.1016/0142-9612(90)90084-4

Sulheim, 2016, Cellular uptake and intracellular degradation of poly(alkyl cyanoacrylate) nanoparticles, J. Nanobiotechnol., 14, 10.1186/s12951-015-0156-7

Barbu, 2009, Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N -isopropylacrylamide or 2-hydroxyethyl methacrylate, Nanotechnology, 20, 10.1088/0957-4484/20/22/225108

Khutoryanskaya, 2014, Hydrogen-bonded complexes and blends of poly(acrylic acid) and methylcellulose: nanoparticles and mucoadhesive films for ocular delivery of riboflavin, Macromol. Biosci., 14, 225, 10.1002/mabi.201300313

Dyawanapelly, 2016, Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins, Drug Deliv. Transl. Res., 6, 365, 10.1007/s13346-016-0295-x

Zhu, 1997, Expression of adhesion molecule CD44 on human corneas, Br. J. Ophthalmol., 81, 80, 10.1136/bjo.81.1.80

Imperiale, 2013, Nanoparticle-in-microparticle delivery systems (NiMDS): production, administration routes and clinical potential, J. Biomater. Tissue Eng., 3, 1, 10.1166/jbt.2013.1064

Yang, 2001, Dynamics of PEO−PPO−PEO and PPO−PEO−PPO triblock copolymers at the air/water interface upon thermal stimulation, Langmuir, 17, 6254, 10.1021/la010468v

Hussaarts, 2017, Equivalence of complex drug products: advances in and challenges for current regulatory frameworks, Ann. N. Y. Acad. Sci., 1407, 39, 10.1111/nyas.13347

ClinicalTrials.gov. A Randomized Controlled Trial Comparing Urea Loaded Nanoparticles to Placebo: a New Concept for Cataract Management [Internet]. 2018 [cited 2018 May 21]. Available from: https://clinicaltrials.gov/ct2/show/study/NCT03001466

Encapsulation of Biologically Active Agents. AR072668A1, 2010.

Hawley L. Ophthalmic Formulation of a Selective Cyclooxygenase-2 Inhibitory Drug. MXPA03000407A, 2002.

Popov A, Enlow E, Chen H. Pharmaceutical Nanoparticles Showing Improved Mucosal Transport. US2013316006A1, 2018.

Ahlheim M, Ausborn M, Bodmer D, Schoch C. Ophthalmic depot formulation for periocular or subconjunctival administration. US2013122064A1, 2013.

Bender, 2004

Gaetano, 2016

Mitra Ashim, 2015

Mitra AK, Velagaleti PR, Natesan S. Ophthalmic compositions comprising calcineurin inhibitors or mTOR inhibitors. US8435544B2, 2013.

Amarnath M, Kumar GA, Dipak M, Sumit M. Sustained release and long residing ophthalmic formulation and the process of preparing the same. US6579519B2, 2003.

Haoran, 2014

Liu D-M, Wang Y-L. Compound prescription colloidal eyedrop gel and methods of making the same. US9849183B2, 2017.

Hee Gang, 2015

Mousa SA. Ocular nanoformulation and method of use in angiogenesis-mediated disorders. US9655862B2, 2017.

Shell, 1993

Maincent, 1995

Masood, 2015

Alcon

DAILYMED

Castillo, 2018

Burke, 2009

Ocular Therapeutix