Polymer‐Based Therapeutic Nanoagents for Photothermal‐Enhanced Combination Cancer Therapy

SMALL STRUCTURES - Tập 2 Số 11 - 2021
Nan Yang1, Yukui Zhang1, Hui Li1, Ying Hong1, Yu Cai2, Xuejiao Song1, Wenjun Wang3, Xiaozhou Mou2, Xiaochen Dong1
1Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211800, China
2Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
3School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China

Tóm tắt

Significant efforts have been made on cancer control by scientists. And various methods for cancer treatment are constantly emerging. Among them, photothermal therapy (PTT) has received a wide range of attention due to its special features, including noninvasiveness, remote control, high selectivity, negligible drug resistance, insignificant side effects, and desired therapeutic effects. Photothermal agents (PTAs), which can convert light into heat under laser irradiation, serve as a crucial role during PTT for killing cancer cells. In the past decades, different kinds of PTAs have been successfully developed. Among these, polymer‐based PTAs are widely used in cancer diagnosis and PTT owing to their competitive features, including customizable designs, controllable synthesis, excellent biocompatibility, negligible cytotoxicity, satisfactory photostability, and desirable photothermal effects. In addition, along with PTT, they also play a crucial role in tumor targeting, cancer imaging, drug delivery, and combination therapies. Herein, the recent advances in cancer therapeutic nanoplatforms built on polymers are reviewed in detail. Meanwhile, future opportunities and challenges for polymer‐based PTAs in cancer therapy are also exemplified.

Từ khóa


Tài liệu tham khảo

10.1039/D0NA00622J

10.1007/s40820-019-0347-0

10.1002/smll.202000436

10.1016/j.ajps.2015.11.123

10.1016/j.nantod.2021.101165

10.1039/C8CS00494C

10.1002/smll.202002790

10.1002/smll.202006004

10.1016/j.biomaterials.2021.120918

10.1039/D0BM00222D

10.1021/acs.chemrev.8b00626

10.1021/acs.accounts.9b00569

10.1016/j.biomaterials.2017.11.025

10.1007/s12274-014-0620-y

10.3389/fbioe.2019.00487

10.1016/j.biomaterials.2019.119252

10.1038/s41467-019-09226-6

10.1515/polyeng-2013-0267

10.1021/acs.accounts.8b00242

10.1039/B709883A

10.1002/anie.201712550

10.1016/j.biomaterials.2018.07.042

10.1002/anie.201808074

10.1021/acsnano.7b04685

10.1002/smll.202001177

10.1016/j.biomaterials.2017.11.016

10.1016/j.biomaterials.2019.119684

10.1002/adma.201808166

10.1021/acsnano.9b03910

10.1021/acsnano.0c00043

10.1016/j.biomaterials.2020.119934

10.1038/s41598-017-11491-8

10.1002/sstr.202000112

10.1021/nn400334y

10.1002/smll.201600365

10.1002/adma.201404308

10.1002/adma.201402996

10.1016/j.biomaterials.2014.07.062

10.1002/advs.201800155

10.1002/smll.201702431

10.1016/j.biomaterials.2018.05.033

10.1002/smll.201703968

10.1021/cr900236h

10.1021/acsnano.5b01077

10.1039/C6TB03215J

10.1039/C5CC09149G

10.1016/j.biomaterials.2017.10.043

10.1016/j.biomaterials.2018.03.030

10.1021/acsnano.8b04066

10.1002/adfm.202000647

10.1002/sstr.202000065

10.1016/j.jhazmat.2007.02.022

10.1016/j.jhazmat.2008.04.080

10.1038/s41467-020-15730-x

10.1002/anie.202003004

10.1021/acs.nanolett.7b05292

10.1038/nnano.2011.153

10.1038/nm.2306

10.1038/ncomms13193

10.1002/sstr.202000026

10.1002/sstr.202000068

10.7150/thno.24073

10.1021/acsnano.1c01194

10.1002/adfm.201902757

10.1016/j.biomaterials.2016.05.033

10.1021/acsnano.8b08101

10.1021/acsnano.9b04954

10.1038/nrd.2015.1

10.1016/j.biomaterials.2019.119304