Polylogarithms, regulators, and Arakelov motivic complexes

Journal of the American Mathematical Society - Tập 18 Số 1 - Trang 1-60
A. B. Goncharov1
1Department of Mathematics, Brown University, Providence, Rhode Island, 02912#TAB#

Tóm tắt

We construct an explicit regulator map from the weight n n Bloch higher Chow group complex to the weight n n Deligne complex of a regular projective complex algebraic variety X X . We define the weight n n Arakelov motivic complex as the cone of this map shifted by one. Its last cohomology group is (a version of) the Arakelov Chow group defined by H. Gillet and C. Soulé. We relate the Grassmannian n n -logarithms to the geometry of the symmetric space S L n ( C ) / S U ( n ) SL_n(\mathcal {C})/SU(n) . For n = 2 n=2 we recover Lobachevsky’s formula expressing the volume of an ideal geodesic simplex in the hyperbolic space via the dilogarithm. Using the relationship with symmetric spaces we construct the Borel regulator on K 2 n 1 ( C ) K_{2n-1}(\mathcal {C}) via the Grassmannian n n -logarithms. We study the Chow dilogarithm and prove a reciprocity law which strengthens Suslin’s reciprocity law for Milnor’s group K 3 M K^M_3 on curves. Our note,“Chow polylogarithms and regulators”, can serve as an introduction to this paper.

Từ khóa


Tài liệu tham khảo

Arnol′d, V. I., 1974, {\cyr Matematicheskie metody klassichesko\u{i}} {\cyr mekhaniki}

Beĭlinson, A. A., 1984, Higher regulators and values of 𝐿-functions, 181

Beĭlinson, A., 1987, Height pairing between algebraic cycles, 1, 10.1090/conm/067/902590

Beĭlinson, A. A., 1986, Notes on absolute Hodge cohomology, 35, 10.1090/conm/055.1/862628

Beĭlinson, A., 1994, Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs, 97

Beĭlinson, A., 1987, Notes on motivic cohomology, Duke Math. J., 54, 679, 10.1215/S0012-7094-87-05430-5

Bloch, Spencer, 1986, Algebraic cycles and higher 𝐾-theory, Adv. in Math., 61, 267, 10.1016/0001-8708(86)90081-2

Bloch, S., 1994, The moving lemma for higher Chow groups, J. Algebraic Geom., 3, 537

Bloch, Spencer, 1986, Algebraic cycles and the Beĭlinson conjectures, 65, 10.1090/conm/058.1/860404

Bloch, Spencer, 1994, Mixed Tate motives, Ann. of Math. (2), 140, 557, 10.2307/2118618

Borel, Armand, 1974, Stable real cohomology of arithmetic groups, Ann. Sci. \'{E}cole Norm. Sup. (4), 7, 235, 10.24033/asens.1269

Borel, Armand, 1977, Cohomologie de 𝑆𝐿_{𝑛} et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4, 613

Bott, Raoul, 1977, On the characteristic classes of groups of diffeomorphisms, Enseign. Math. (2), 23, 209

Burgos, Jose Ignacio, 1997, Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Algebraic Geom., 6, 335

Consani, Caterina, 1998, Double complexes and Euler 𝐿-factors, Compositio Math., 111, 323, 10.1023/A:1000362027455

Dupont, Johan L., 1976, Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology, 15, 233, 10.1016/0040-9383(76)90038-0

Deligne, P., 1987, Le déterminant de la cohomologie, 93, 10.1090/conm/067/902592

Fulton, William, 1998, Intersection theory, 2, 2, 10.1007/978-1-4612-1700-8

Dynkin, E. B., 1954, Topological characteristics of homomorphisms of compact Lie groups, Mat. Sb. N.S., 35(77), 129

Gabrièlov, A. M., 1975, Combinatorial computation of characteristic classes. I, II, Funkcional. Anal. i Prilo\v{z}en., 9, 12

Gel′fand, I. M., 1982, Geometry in Grassmannians and a generalization of the dilogarithm, Adv. in Math., 44, 279, 10.1016/0001-8708(82)90040-8

Gillet, Henri, 1990, Arithmetic intersection theory, Inst. Hautes \'{E}tudes Sci. Publ. Math., 93

Goncharov, A. B., 1995, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math., 114, 197, 10.1006/aima.1995.1045

Goncharov, A. B., 1994, Polylogarithms and motivic Galois groups, 43

Goncharov, A. B., 1993, Explicit construction of characteristic classes, 169

Goncharov, A. B., 1996, Deninger’s conjecture of 𝐿-functions of elliptic curves at 𝑠=3, J. Math. Sci., 81, 2631, 10.1007/BF02362333

Goncharov, A. B., 1995, Chow polylogarithms and regulators, Math. Res. Lett., 2, 95, 10.4310/MRL.1995.v2.n1.a9

Goncharov, A. B., 2000, Geometry of the trilogarithm and the motivic Lie algebra of a field, 127

Goncharov, A. B., 2002, Explicit regulator maps on polylogarithmic motivic complexes, 245

Goncharov, A. B., 2001, Grassmannian trilogarithms, Compositio Math., 127, 83, 10.1023/A:1017504115184

Hain, Richard M., 1990, Higher logarithms, Illinois J. Math., 34, 392

Hain, Richard M., 1996, The existence of higher logarithms, Compositio Math., 100, 247

Hain, Richard M., 1996, Real Grassmann polylogarithms and Chern classes, Math. Ann., 304, 157, 10.1007/BF01446290

Hanamura, Masaki, 1993, Geometric construction of polylogarithms, Duke Math. J., 70, 481, 10.1215/S0012-7094-93-07010-X

Hanamura, Masaki, 1996, Geometric construction of polylogarithms. II, 215

Leibniz, G. W., 1962, Mathematische Schriften. Bd. I.: Briefwechsel zwischen Leibniz und Oldenburg, Collins, Newton, Galloys, Vitale Giordano. Bd. II: Briefwechsel zwischen Leibniz, Hugens van Zulichem und dem Marquis de l'Hospital

[Le]Le Levin A.M.: Notes on ℝ-Hodge-Tate sheaves. Preprint MPI 2001.

Levine, Marc, 1994, Bloch’s higher Chow groups revisited, Ast\'{e}risque, 10

Lichtenbaum, Stephen, 1973, Values of zeta-functions, étale cohomology, and algebraic 𝐾-theory, 489

MacPherson, Robert, 1978, The combinatorial formula of Gabrielov, Gel′fand and Losik for the first Pontrjagin class, Exp. No. 497, pp. 105--124

Nekovář, Jan, 1994, Beĭlinson’s conjectures, 537, 10.21136/mb.1994.126199

Nesterenko, Yu. P., 1989, Homology of the general linear group over a local ring, and Milnor’s 𝐾-theory, Izv. Akad. Nauk SSSR Ser. Mat., 53, 121, 10.1070/IM1990v034n01ABEH000610

1988, Beilinson's conjectures on special values of $L$-functions, 4

Scholl, Anthony J., 2000, Integral elements in 𝐾-theory and products of modular curves, 467

Soulé, C., 1992, Lectures on Arakelov geometry, 33, 10.1017/CBO9780511623950

Suslin, A. A., 1984, Homology of 𝐺𝐿_{𝑛}, characteristic classes and Milnor 𝐾-theory, 357, 10.1007/BFb0072031

Zagier, Don, 1991, Polylogarithms, Dedekind zeta functions and the algebraic 𝐾-theory of fields, 391