Polylactic acid blends: The future of green, light and tough

Progress in Polymer Science - Tập 85 - Trang 83-127 - 2018
Kotiba Hamad1, Mosab Kaseem2, Muhammad Ayyoob3, Jinho Joo1, Fawaz Deri4
1School of Advanced Materials Science & Engineering, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
2Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, South Korea
3Department of Chemical Engineering, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
4Department of Chemistry, University of Damascus, Damascus, Syria

Tài liệu tham khảo

Chandra, 1998, Biodegradable polymers, Prog Polym Sci, 23, 1273, 10.1016/S0079-6700(97)00039-7 Briassoulis, 2004, An overview on the mechanical behaviour of biodegradable agricultural films, J Polym Environ, 12, 65, 10.1023/B:JOOE.0000010052.86786.ef Anonymous, 2007, Technology focus report: toughened PLA, Natureworks LLC Website, 5 Watson, 1948, Lactic acid polymers as constituents of synthetic resins and coatings, Ind Eng Chem, 40, 1393, 10.1021/ie50464a012 Rasal, 2010, Poly(lactic acid) modifications, Prog Polym Sci, 35, 338, 10.1016/j.progpolymsci.2009.12.003 Lim, 2008, Processing technologies for poly(lactic acid), Prog Polym Sci, 33, 820, 10.1016/j.progpolymsci.2008.05.004 Nampoothiri, 2010, An overview of the recent developments in polylactide (PLA) research, Bioresour Technol, 101, 8493, 10.1016/j.biortech.2010.05.092 Saeidlou, 2012, Poly(lactic acid) crystallization, Prog Polym Sci, 37, 1657, 10.1016/j.progpolymsci.2012.07.005 Hamad, 2015, Properties and medical applications of polylactic acid: a review, Express Polym Lett, 9, 435, 10.3144/expresspolymlett.2015.42 Hamad, 2014, Biodegradable polymer blends and composites: an overview, J Polym Sci Part A Polym Chem, 56, 812 Saini, 2016, Poly(lactic acid) blends in biomedical applications, Adv Drug Deliv Rev, 107, 47, 10.1016/j.addr.2016.06.014 Sodergard, 2010, Industrial production of high molecular weight poly(lactic acid) Murariu, 2016, PLA composites: from production to properties, Adv Drug Deliv Rev, 107, 17, 10.1016/j.addr.2016.04.003 Maharana, 2009, Melt-solid polycondensation of lactic acid and its biodegradability, Prog Polym Sci, 34, 99, 10.1016/j.progpolymsci.2008.10.001 Vink, 2003, Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production, Polym Degrad Stab, 80, 403, 10.1016/S0141-3910(02)00372-5 Cheng, 2009, Polylactic acid (PLA) synthesis and modifications: a review, Front Chem China, 4, 259, 10.1007/s11458-009-0092-x Dutkiewicz, 2003, Synthesis of poly(L(+) lactic acid) by polycondensation method in solution, Fibres Text Eastern Eur, 11, 66 Xiao, 2012, Poly (lactic acid)-based biomaterials: synthesis, modification and applications Lasprilla, 2012, Polylactic acid synthesis for application in biomedical devices–a review, Biotechnol Adv, 30, 321, 10.1016/j.biotechadv.2011.06.019 Fukushima, 2008, An efficient solid-state polycondensation method for synthesizing stereocomplexed poly(lactic acid)s with high molecular weight, J Polym Sci Part A Polym Chem, 46, 3314, 10.1002/pola.22712 Moon, 2000, Melt polycondensation of l-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight poly(l-lactic acid), J Polym Sci Part A Polym Chem, 38, 1673, 10.1002/(SICI)1099-0518(20000501)38:9<1673::AID-POLA33>3.0.CO;2-T Keki, 2001, Fast microwave-mediated bulk polycondensation of D,L-lactic acid, Macromo Rapid Commun, 22, 1063, 10.1002/1521-3927(20010901)22:13<1063::AID-MARC1063>3.0.CO;2-3 Jing, 2006, Rapid melt polycondensation of L-lactic acid under microwave irradiation, Macromol Res, 14, 659, 10.1007/BF03218740 Zhou, 2007, Chain extension and branching of poly(L-lactic acid) produced by reaction with a DGEBA-based epoxy resin, Express Polym Lett, 1, 734, 10.3144/expresspolymlett.2007.101 Gu, 2008, Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension, Polym Int, 57, 982, 10.1002/pi.2435 Sanglard, 2012, Poly(lactic acid) synthesis and characterization, Chim Int J Chem, 66, 951, 10.2533/chimia.2012.951 Yang, 2008, Improved preparation of D,L-lactide from D,L-lactic acid using microwave irradiation, Polym Bull, 61, 177, 10.1007/s00289-008-0945-3 Zhong, 2002, [(Salen)Al]-mediated, controlled and stereoselective ring-opening polymerization of lactide in solution and without solvent: synthesis of highly isotactic polylactide stereocopolymers from racemic D,L-lactide, Angew Chem, 114, 4692, 10.1002/1521-3757(20021202)114:23<4692::AID-ANGE4692>3.0.CO;2-5 Kaihara, 2007, Synthesis of poly(L-lactide) and polyglycolide by ring-opening polymerization, Nat Protoc, 2, 2767, 10.1038/nprot.2007.391 Dbey, 2017, Progress in environmental-friendly polymer nanocomposite material from PLA: synthesis, processing and applications, Vacuum, 146, 655, 10.1016/j.vacuum.2017.07.009 Nikolic, 2010, Novel microwave-assisted synthesis of poly(D,L-lactide): the influence of monomer/initiator molar ratio on the product properties, Sensors, 10, 5063, 10.3390/s100505063 Liu, 2001, Microwave-assisted polymerization of D,L-lactide with stannous octanoate as catalyst, Chin Chem Lett, 12, 663 Singla, 2012, Microwave assisted synthesis of poly (lactic acid) and its characterization using size exclusion chromatography, J Macromol Sci Pure Appl Chem, 49, 963, 10.1080/10601325.2012.722858 Dubey, 2017, Microwave energy assisted synthesis of poly lactic acid via continuous reactive extrusion: modelling of reaction kinetics, RSC Adv, 7, 18259, 10.1039/C6RA26514F Nagahata, 2007, Microwave-assisted single-step synthesis of poly(lactic acid) by direct polycondensation of lactic acid, Macromol Rapid Commun, 28, 437, 10.1002/marc.200600715 Jamshidian, 2010, Poly-lactic acid: production, applications, nanocomposites, and release studies, Comp Rev Food Sci Food Saf, 9, 552, 10.1111/j.1541-4337.2010.00126.x Imre, 2014, Interactions, structure and properties in poly(lactic acid)/thermoplastic polymer blends, Express Polym Lett, 8, 2, 10.3144/expresspolymlett.2014.2 Tan, 2006, Influence of rubber content in ABS in wide range on the mechanical properties and morphology of PC/ABS blends with different composition, Polym Eng Sci, 46, 1476, 10.1002/pen.20584 Fang, 2015, Using water to modify the localization of clay in immiscible polymer blends, RSC Adv, 5, 75311, 10.1039/C5RA12594D Koning, 1998, Strategies for compatibilization of polymer blends, Prog Polym Sci, 23, 707, 10.1016/S0079-6700(97)00054-3 Zhong, 2012, Characterization of biodegradable polymers by inverse gas chromatography. III. Blends of amylopectin and poly(l-lactide), J Appl Polym Sci, 123, 2616, 10.1002/app.34516 Li, 2008, Immiscibility-miscibility phase transitions in blends of poly(l-lactide) with poly(methyl methacrylate), Polym Int, 57, 1242, 10.1002/pi.2469 Anakabe, 2015, Melt blending of polylactide and poly(methyl methacrylate): thermal and mechanical properties and phase morphology characterization, J Appl Polym Sci, 132, 42677, 10.1002/app.42677 Gerard, 2012, Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends, Eur Polym J, 48, 1110, 10.1016/j.eurpolymj.2012.03.015 Arrieta, 2017, On the use of PLA-PHB blends for sustainable food packaging applications, Materials, 10, 1008, 10.3390/ma10091008 Yu, 2006, Polymer blends and composites from renewable resources, Prog Polym Sci, 31, 576, 10.1016/j.progpolymsci.2006.03.002 Vogel, 2009, Rheo-optical FT-IR spectroscopy of poly(3-hydroxybutyrate)/poly(lactic acid) blend film, Vib Spectrosc, 49, 284, 10.1016/j.vibspec.2008.10.014 Bartczak, 2013, Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate)—morphology and properties, Eur Polym J, 49, 3630, 10.1016/j.eurpolymj.2013.07.033 Peesan, 2006, Electrospinning of hexanoyl chitosan/ polylactide blends, J Biomater Sci Polym Ed, 17, 547, 10.1163/156856206776986251 Jing, 2014, Morphology, mechanical properties, and shape memory effects of poly(lactic acid)/thermoplastic polyurethane blend scaffolds prepared by thermally induced phase separation, J Cell Plast, 50, 361, 10.1177/0021955X14525959 Urquijo, 2015, Melt processed PLA/PCL blends: effect of processing method on phase structure, morphology, and mechanical properties, J Appl Polym Sci, 132, 10.1002/app.42641 Zhang, 1996, Miscibility, crystallization and morphology of poly(P-hydroxybutyrate)/ poly(d,l-lactide) blends, Polymer, 37, 235, 10.1016/0032-3861(96)81093-7 Zeng, 2015, Compatibilization strategies in poly(lactic acid)-based blends, RSC Adv, 5, 32546, 10.1039/C5RA01655J Anderson, 2004, The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends, Polymer, 45, 8809, 10.1016/j.polymer.2004.10.047 Ma, 2012, Degradation and miscibility of poly(DL-lactic acid)/poly(glycolic acid) composite films: effect of poly(DL-lactic-co-glycolic acid), Bull Mater Sci, 35, 575, 10.1007/s12034-012-0326-2 Tsuji, 2003, Blends of aliphatic polyesters. Part 7. Effects of poly(L-lactide-co-ε-caprolactone) on morphology, structure, crystallization, and physical properties of blends of poly(L-lactide) and poly(ε-caprolactone), Polym Int, 52, 269, 10.1002/pi.1093 Nagarajan, 2016, Perspective on polylactic acid (PLA) based sustainable Materials for durable applications: focus on toughness and heat resistance, ACS Sustain Chem Eng, 4, 2899, 10.1021/acssuschemeng.6b00321 Wang, 2001, Polyethylene-poly(L-lactide) diblock copolymers: synthesis and compatibilization of poly(L-lactide)/polyethylene blends, J Polym Sci Part A Polym Chem, 39, 2755, 10.1002/pola.1254 Kim, 2000, Effect of P(lLA-co-εCL) on the compatibility and crystallization behavior of PCL/PLLA blends, J Appl Polym Sci, 77, 226, 10.1002/(SICI)1097-4628(20000705)77:1<226::AID-APP29>3.0.CO;2-8 Choi, 2002, Morphology and hydrolysis of PCL/PLLA blends compatibilized with P(LLA-co-εCL) or P(LLA-b-εCL), J Appl Polym Sci, 86, 1892, 10.1002/app.11134 Wu, 2010, Viscoelastic interfacial properties of compatibilized poly(ε-caprolactone)/ polylactide blend, J Polym Sci Part A Polym Chem, 48, 756, 10.1002/polb.21952 Choudhary, 2011, Poly(L-lactide)/polypropylene blends: evaluation of mechanical, thermal, and morphological characteristics, J Appl Polym Sci, 121, 3223, 10.1002/app.33866 Li, 2011, Morphology, rheology, and mechanical properties of polylactide/poly(ethyleneco-octene) blends, J Macromol Sci Part B, 50, 2050, 10.1080/00222348.2011.557617 Singh, 2010, Mechanical properties and morphology of polylactide, linear low-density polyethylene, and their blends, J Appl Polym Sci, 118, 496, 10.1002/app.32305 Lee, 2012, Effect of a hybrid compatibilizer on the mechanical properties and interfacial tension of a ternary blend with polypropylene, poly(lactic acid), and a toughening modifier, Polym Compos, 33, 1154, 10.1002/pc.22244 Sun, 2011, Polylactide toughening with epoxy-functionalized grafted acrylonitrile-butadiene-styrene particles, J Appl Polym Sci, 122, 2992, 10.1002/app.34111 Juntuek, 2012, Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends, J Appl Polym Sci, 125, 745, 10.1002/app.36263 Wu, 2005, Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid-characterization and biodegradability assessment, Macromol Biosci, 5, 352, 10.1002/mabi.200400159 Huneault, 2007, Morphology and properties of compatibilized polylactide/thermoplastic starch blends, Polymer, 48, 270, 10.1016/j.polymer.2006.11.023 Wootthikanokkhan, 2012, Preparation of modified starch-grafted poly(lactic acid) and a study on compatibilizing efficacy of the copolymers in poly(lactic acid)/thermoplastic starch blends, J Appl Polym Sci, 126, E388, 10.1002/app.36896 Teamsinsungvon, 2013, Preparation and characterization of poly(lactic acid)/poly(butylene adipate-co-terepthalate) blends and their composite, Polym Plast Technol Eng, 52, 1362, 10.1080/03602559.2013.820746 Liu, 2012, Grafting of glycidyl methacrylate onto poly(lactide) and properties of PLA/starch blends compatibilized by the grafted copolymer, J Polym Environ, 20, 810, 10.1007/s10924-012-0438-1 Harada, 2007, Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent, J Appl Polym Sci, 106, 1813, 10.1002/app.26717 Takayama, 2011, Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends, J Mech Behav Biomed Mater, 4, 255, 10.1016/j.jmbbm.2010.10.003 Chung, 2003 Ma, 2014, In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator, Polym Degrad Stab, 102, 145, 10.1016/j.polymdegradstab.2014.01.025 Wang, 2001, Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate, J Appl Polym Sci, 82, 1761, 10.1002/app.2018 Zhang, 2004, Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride, Macromolecules, 5, 1446 Jacobsen, 1996, Filling of poly(lactic acid) with native starch, Polym Eng Sci, 36, 2799, 10.1002/pen.10680 Martin, 2001, Poly (lactic acid): plasticization and properties of biodegradable multiphase systems, Polymer, 42, 6209, 10.1016/S0032-3861(01)00086-6 Mihai, 2007, Extrusion Foaming of semi-crystalline PLA and PLA/thermoplastic starch blends, Macromol Biosci, 7, 907, 10.1002/mabi.200700080 Wang, 2008, Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends, Carbohyd Polym, 71, 109, 10.1016/j.carbpol.2007.05.025 Li, 2008, Crystallization of PLA/thermoplastic starch blends, Int Polym Process, 23, 412, 10.3139/217.2185 Wang, 2010, Effect of water on the properties of thermoplastic starch poly(lactic acid) blend containing citric acid, J Thermoplast Compos Mater, 23, 19, 10.1177/0892705709096549 Li, 2011, Effect of chain extension on the properties of PLA/TPS blends, J Appl Polym Sci, 122, 134, 10.1002/app.33981 Li, 2011, Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends, J Appl Polym Sci, 119, 2439, 10.1002/app.32956 Shi, 2011, Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE, Polym Degrad Stab, 96, 175, 10.1016/j.polymdegradstab.2010.10.002 Shin, 2011, Thermal, morphological, and mechanical properties of biobased and biodegradable blends of poly(lactic acid) and chemically modified thermoplastic starch, Polym Eng Sci, 51, 826, 10.1002/pen.21896 Gao, 2011, Mechanical, thermal, and biodegradability properties of PLA/modified starch blends, Polym Compos, 32, 2093, 10.1002/pc.21241 Huneault, 2012, Preparation and properties of extruded thermoplastic starch/polymer blends, J Appl Polym Sci, 126, 96, 10.1002/app.36724 Wootthikanokkhan, 2012, Effect of blending conditions on mechanical, thermal, and rheological properties of plasticized poly(lactic acid)/maleated thermoplastic starch blends, J Appl Polym Sci, 124, 1012, 10.1002/app.35142 Zhang, 2012, The Effect of polymeric chain extenders on physical properties of thermoplastic starch and polylactic acid blends, J Polym Environ, 20, 315, 10.1007/s10924-011-0368-3 Ma, 2012, Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene)-co-(vinyl acetate)/starch blends via reactive compatibilization, Polym Int, 61, 1284, 10.1002/pi.4204 Shirai, 2013, Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters, Carbohyd Polym, 92, 19, 10.1016/j.carbpol.2012.09.038 Soares, 2014, Effect of cooling and coating on thermoplastic starch/poly(lactic acid) blend sheets, Polym Test, 33, 34, 10.1016/j.polymertesting.2013.11.001 Sirin, 2014, The effects of thermomechanical cycles on the properties of PLA/TPS blends, Adv Polym Tech, 33, E1, 10.1002/adv.21458 Ljungberg, 2005, Preparation and properties of plasticized poly(lactic acid) films, Biomacromolecules, 6, 1789, 10.1021/bm050098f Bonilla, 2013, Effects of chitosan on the physicochemical and antimicrobial properties of PLA films, J Food Eng, 119, 236, 10.1016/j.jfoodeng.2013.05.026 Claro, 2016, Biodegradable blends with potential use in packaging: a comparison of PLA/chitosan and PLA/cellulose acetate films, J Polym Environ, 24, 363, 10.1007/s10924-016-0785-4 González, 2013, Soy protein-poly (lactic acid) bilayer films as biodegradable material for active food packaging, Food Hydrocoll, 33, 289, 10.1016/j.foodhyd.2013.03.010 Zhu, 2012, Compatibilizing effects of maleated poly (lactic acid) (PLA) on properties of PLA/soy protein composites, Ind Eng Chem Res, 51, 7786, 10.1021/ie300118x Yang, 2015, Characterization and biodegradation behavior of bio-based poly (lactic acid) and soy protein blends for sustainable horticultural applications, Green Chem, 17, 380, 10.1039/C4GC01482K Zhang, 2001, Mechanical and thermal properties of extruded soy protein sheets, Polymer, 42, 2569, 10.1016/S0032-3861(00)00624-8 Zhang, 2006, Morphology and properties of soy protein and polylactide blends, Biomacromolecules, 7, 1551, 10.1021/bm050888p Cock, 2013, Thermal, rheological and microstructural characterisation of commercial biodegradable polyesters, Polym Test, 32, 716, 10.1016/j.polymertesting.2013.03.015 Yeh, 2009, Study on the crystallization, miscibility, morphology, properties of poly(lactic acid)/poly(ε-caprolactone) blends, Polym Plast Tech Eng, 48, 571, 10.1080/03602550902824390 Simoes, 2009, Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends, J Appl Polym Sci, 112, 345, 10.1002/app.29425 Todo, 2007, Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends, Eng Fract Mech, 74, 1872, 10.1016/j.engfracmech.2006.05.021 López-Rodríguez, 2006, Crystallization, morphology, and mechanical behavior of polylactide/poly(ε-caprolactone) blends, Polym Eng Sci, 46, 1299, 10.1002/pen.20609 Yoon, 2003, The effects of blend composition and blending time on the ester interchange reaction and tensile properties of PLA/LPCL/HPCL blends, Fib Polym, 4, 59, 10.1007/BF02875438 Broz, 2003, Structure and mechanical properties of poly(d,l-lactic acid)/poly(ε-caprolactone) blends, Biomaterials, 24, 4181, 10.1016/S0142-9612(03)00314-4 Vilay, 2013, Characterization of the microstructure and mode I fracture property of biodegradable poly(L-lactic acid) and poly(ε-caprolactone) polymer blends with the additive lysine triisocyanate, Polym Plast Tech Eng, 52, 768, 10.1080/03602559.2013.763350 Harada, 2008, Reactive compatibilization of biodegradable poly(lactic acid)/poly(ε-caprolactone) blends with reactive processing agents, Polym Eng Sci, 48, 1359, 10.1002/pen.21088 Semba, 2006, The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends, J Appl Polym Sci, 101, 1816, 10.1002/app.23589 Wang, 1998, Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone), Polym Degrad Stab, 59, 161, 10.1016/S0141-3910(97)00196-1 Park, 2010, Plasticizer effect of novel PBS ionomer in PLA/PBS ionomer blends, Macromo Res, 18, 463, 10.1007/s13233-010-0512-2 Park, 2002, Morphological changes during heating in poly(L-lactic acid)/poly(butylene succinate) blend systems as studied by synchrotron X-ray scattering, J Polym Sci Part A Polym Chem, 40, 1931, 10.1002/polb.10240 Park, 2002, Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate), J Appl Polym Sci, 86, 647, 10.1002/app.10923 Yokohara, 2008, Structure and properties for biomass-based polyester blends of PLA and PBS, Eur Polym J, 44, 677, 10.1016/j.eurpolymj.2008.01.008 Bhatia, 2007, Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application, Korea Aust Rheo J, 19, 125 Hassan, 2013, Dynamic mechanical properties and thermal stability of poly(lactic acid) and poly(butylene succinate) blends composites, J Fiber Bioeng Inform, 6, 85, 10.3993/jfbi03201308 Persenaire, 2014, Reactive compatibilization of poly(l-lactide)/poly(butylene succinate) blends through polyester maleation: from materials to properties, Polym Int, 63, 1724, 10.1002/pi.4700 Chen, 2005, Compatibilization-like effect of reactive organoclay on the poly(l-lactide)/poly(butylene succinate) blends, Polymer, 46, 11829, 10.1016/j.polymer.2005.10.056 Lee, 2005, Characterization and processing of biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate), Korea Aust Rheo J, 17, 71 Art, 2015, Compression molding and melt-spinning of the blends of poly(lactic acid) and poly(butylene succinate-co-adipate), J Appl Polym Sci, 132 Ojijo, 2012, Role of specific interfacial area in controlling Properties of immiscible blends of biodegradable polylactide and poly(butylene succinate)-co-adipate, Appl Mater Inter, 4, 6690, 10.1021/am301842e Eslami, 2013, Elongational rheology of biodegradable poly(lactic acid)/poly[(butylene succinate)-co-adipate] binary blends and poly(lactic acid)/poly[(butylene succinate)-co-adipate]/clay ternary nanocomposites, J Appl Polym Sci, 127, 2290, 10.1002/app.37928 Ojijo, 2013, Toughening of biodegradable polylactide/poly(butylene succinate-co-adipate) blends via in situ reactive compatibilization, Appl Mater Inter, 5, 4266, 10.1021/am400482f Ojijo, 2012, Unique isothermal crystallization phenomenon in the ternary blends of biopolymers polylactide and poly[(butylene succinate)-co-adipate] and nano-clay, Polymer, 53, 505, 10.1016/j.polymer.2011.12.007 Jiang, 2006, Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends, Biomacromolecules, 7, 199, 10.1021/bm050581q Yeh, 2010, Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends, J Appl Polym Sci, 116, 680 Gu, 2008, Melt rheology of polylactide/poly(butylene adipate-co-terephthalate) blends, Carbohyd Polym, 74, 79, 10.1016/j.carbpol.2008.01.017 Signori, 2009, Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing, Polym Degrad Stab, 94, 74, 10.1016/j.polymdegradstab.2008.10.004 Weng, 2013, Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions, Polym Test, 32, 918, 10.1016/j.polymertesting.2013.05.001 Kumar, 2010, Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites, Bioresour Technol, 101, 8406, 10.1016/j.biortech.2010.05.075 Zhang, 2009, Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent, J Mater Sci, 44, 250, 10.1007/s10853-008-3049-4 Al-Itry, 2014, Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends, Rheol Acta, 53, 501, 10.1007/s00397-014-0774-2 Al-Itry, 2012, Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy, Polym Degrad Stab, 97, 1898, 10.1016/j.polymdegradstab.2012.06.028 Arruda, 2015, Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends, Polym Test, 43, 27, 10.1016/j.polymertesting.2015.02.005 Coltelli, 2010, The effect of free radical reactions on structure and properties of poly(lactic acid) (PLA) based blends, Polym Degrad Stab, 95, 332, 10.1016/j.polymdegradstab.2009.11.015 Lin, 2012, Mechanical properties and morphology of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends compatibilized by transesterification, Mater Des, 36, 604, 10.1016/j.matdes.2011.11.036 Sudesh, 2000, Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters, Prog Polym Sci, 25, 1503, 10.1016/S0079-6700(00)00035-6 He, 2014, Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures, J Mater Sci Mater Med, 25, 561, 10.1007/s10856-013-5073-4 Zhou, 2015, Characterization of the effect of REC on the compatibility of PHBH and PLA, Polym Test, 42, 17, 10.1016/j.polymertesting.2014.12.014 Zembouai, 2014, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends: thermal stability, flammability and thermo-mechanical behavior, J Polym Environ, 22, 131, 10.1007/s10924-013-0626-7 Djellali, 2015, Viscosity and viscoelasticity measurements of low density polyethylene/poly(lactic acid) blends, Polym Bull, 72, 1177, 10.1007/s00289-015-1331-6 Hamad, 2012, Poly (lactic acid)/low density polyethylene polymer blends: preparation and characterization, Asia Pac J Chem Eng, 1, 208 Hamad, 2011, Melt rheology of poly (lactic acid)/low density polyethylene polymer blends, Adv Chem Eng Sci, 7, S310 Balakrishnan, 2010, Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends, J Elast Plast, 42, 223, 10.1177/0095244310362403 Kim, 2004, Compatibilization of immiscible poly(l-lactide) and low density polyethylene blends, Fib Polym, 5, 270, 10.1007/BF02875524 Anderson, 2003, Toughening of polylactide by melt blending with linear low-density polyethylene, J Appl Polym Sci, 89, 3757, 10.1002/app.12462 Habi, 2013, Tuning the processability, morphology and biodegradability of clay incorporated PLA/LLDPE blends via selective localization of nanoclay induced by melt mixing sequence, Express Polym Lett, 7, 21, 10.3144/expresspolymlett.2013.3 Oyama, 2009, Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer, Polymer, 50, 747, 10.1016/j.polymer.2008.12.025 Hamad, 2011, Rheological and mechanical characterization of poly (lactic acid)/polypropylene polymer blends, J Polym Res, 18, 1799, 10.1007/s10965-011-9586-6 Reddy, 2008, Polylactic acid/polypropylene polyblend fibers for better resistance to degradation, Polym Degrad Stab, 93, 233, 10.1016/j.polymdegradstab.2007.09.005 Yoo, 2010, Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends, Macromo Res, 18, 583, 10.1007/s13233-010-0613-y Kang, 2015, Properties of immiscible and ethylene-butyl acrylate-glycidyl methacrylate terpolymer compatibilized poly (lactic acid) and polypropylene blends, Polym Test, 43, 173, 10.1016/j.polymertesting.2015.03.012 Biresaw, 2002, Interfacial tension of poly(lactic acid)/polystyrene blends, J Polym Sci Part A Polym Chem, 40, 2248, 10.1002/polb.10290 Mohamed, 2007, Poly(lactic acid)/polystyrene bioblends characterized by thermogravimetric analysis, differential scanning calorimetry, and photoacoustic infrared spectroscopy, J Appl Polym Sci, 106, 1689, 10.1002/app.26783 Hamad, 2011, Effect of recycling on the rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend, J Mater Sci, 46, 3013, 10.1007/s10853-010-5179-8 Biresaw, 2004, Compatibility and mechanical properties of blends of polystyrene with biodegradable polyesters, Composites Part A, 35, 313, 10.1016/j.compositesa.2003.09.020 Hamad, 2010, Rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend, Polym Bull, 65, 509, 10.1007/s00289-010-0354-2 Hamad, 2016, Mechanical properties and compatibility of polylactic acid/polystyrene polymer blend, Mater Lett, 164, 409, 10.1016/j.matlet.2015.11.029 Liu, 2004, Polymeric scaffolds for bone tissue engineering, Ann Biomed Eng, 32, 477, 10.1023/B:ABME.0000017544.36001.8e Sarazin, 2003, Morphology control in co-continuous poly(L-lactide)/polystyrene blends: a route towards highly structured and interconnected porosity in poly(L-lactide) materials, Biomacromolecules, 4, 1669, 10.1021/bm030034+ Huang, 2016, Controlling the morphology of immiscible cocontinuous polymer blends via silica nanoparticles jammed at the interface, Macromolecules, 49, 3911, 10.1021/acs.macromol.6b00212 Wang, 2014, Hierarchically porous polymeric materials from ternary polymer blends, Polymer, 55, 3461, 10.1016/j.polymer.2014.06.042 Li, 2009, Improvement in toughness of poly(l-lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrene copolymer (ABS): morphology and properties, Eur Polym J, 45, 738, 10.1016/j.eurpolymj.2008.12.010 Girija, 2005, Thermal degradation and mechanical properties of PET blends, Polym Degrad Stab, 90, 147, 10.1016/j.polymdegradstab.2005.03.003 Chen, 2009, Non-isothermal crystallization of PET/PLA blends, Thermochim Acta, 492, 61, 10.1016/j.tca.2009.04.023 Torres-Huerta, 2014, Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends, Eur Polym J, 61, 285, 10.1016/j.eurpolymj.2014.10.016 Al-Jabareen, 2010, Effects of composition and transesterification catalysts on the physico-chemical and dynamic properties of PC/PET blends rich in PC, J Mater Sci, 45, 6623, 10.1007/s10853-010-4753-4 Na, 2005, Transesterification and compatibilization in the blends of bisphenol-A polycarbonate and poly(trimethylene terephthalate), Macromol Res, 13, 88, 10.1007/BF03219020 Kuo, 2003, Significant thermal property and hydrogen bonding strength increase in poly(vinylphenol-co-vinylpyrrolidone) copolymer, Polymer, 44, 3021, 10.1016/S0032-3861(03)00218-0 Kim, 2012, Chain extension effects of para-phenylene diisocyanate on crystallization behavior and biodegradability of poly(lactic acid)/poly(butylene terephthalate) blends, Adv Compos Mater, 19, 331, 10.1163/092430409X12605406698471 Samthong, 2016, Effects of size and shape of dispersed poly(butylene terephthalate) on isothermal crystallization kinetics and morphology of poly(lactic acid) blends, Polym Eng Sci, 56, 258, 10.1002/pen.24246 Eguiburu, 1998, Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl methacylate): a miscibility study, Polymer, 39, 6891, 10.1016/S0032-3861(98)00182-7 Zhang, 2003, Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate), J Polym Sci Part A Polym Chem, 41, 23, 10.1002/polb.10353 Shirahase, 2006, Miscibility and hydrolytic degradation in alkaline solution of poly(L-lactide) and poly(methyl methacrylate) blends, Polymer, 47, 4839, 10.1016/j.polymer.2006.04.012 Li, 2008, Effects of Chain configuration on UCST behavior in blends of poly(L-lactic acid) with tactic poly(methyl methacrylate)s, J Polym Sci Part B Polym Phys, 46, 2355, 10.1002/polb.21567 Lee, 2011, Compatibilizing effects for improving mechanical properties of biodegradable poly (lactic acid) and polycarbonate blends, Polym Degrad Stab, 96, 553, 10.1016/j.polymdegradstab.2010.12.019 Wang, 2012, Improvement in toughness and heat resistance of poly(lactic acid)/polycarbonate blend through twin-screw blending: influence of compatibilizer type, J Appl Polym Sci, 125, 402, 10.1002/app.36920 Pompe, 1997, Investigations of transesterification in PC/PBT melt blends and the proof of immiscibility of PC and PBT at completely suppressed transesterification, J Appl Polym Sci, 35, 2161, 10.1002/(SICI)1099-0488(19970930)35:13<2161::AID-POLB16>3.0.CO;2-2 Wilkinson, 1997, Melting, reaction and recrystallization in a reactive PC-PBT blend, Polymer, 38, 1923, 10.1016/S0032-3861(96)00712-4 Bao, 2014, Effects of enhanced compatibility by transesterification on the cell morphology of poly(lactic acid)/ polycarbonate blends using supercritical carbon dioxide, J Cell Polym, 51, 349 Liu, 2012, Influence of catalyst on transesterification between poly(lactic acid) and polycarbonate under flow field, Polymer, 54, 310, 10.1016/j.polymer.2012.11.047 Phuong, 2014, Compatibilization and property enhancement of poly(lactic acid)/polycarbonate blends through triacetin-mediated interchange reactions in the melt, Polymer, 55, 4498, 10.1016/j.polymer.2014.06.070 Hashima, 2010, Structure-properties of super-tough PLA alloy with excellent heat resistance, Polymer, 51, 3934, 10.1016/j.polymer.2010.06.045 Stoclet, 2011, Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers, Polylactide/polyamide11. Polymer, 52, 1417, 10.1016/j.polymer.2011.02.002 Dong, 2014, High-performance biosourced poly(lactic acid)/polyamide 11 blends with controlled salami structure, Polym Int, 63, 1094, 10.1002/pi.4618 Fekete, 2005, Effect of molecular interactions on the miscibility and structure of polymer blends, Eur Polym J, 41, 727, 10.1016/j.eurpolymj.2004.10.038 Hung, 2003, HDPE/PA6 blends: parison formation behaviour in extrusion blow molding, Polym Test, 22, 509, 10.1016/S0142-9418(02)00145-9 Feng, 2010, Structure and property of polylactide/polyamide blends, J Macromol Sci Part B, 49, 1117, 10.1080/00222341003609179 Khankrua, 2014, Effect of chain extenders on thermal and mechanical properties of poly(lactic acid) at high processing temperatures: potential application in PLA/Polyamide 6 blend, Polym Degrad Stab, 108, 232, 10.1016/j.polymdegradstab.2014.04.019 Hung, 2013, Enhanced the thermal stability and crystallinity of polylactic acid (PLA) by incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymers as chain extenders, Polymer, 54, 186, 10.1016/j.polymer.2013.01.045 Sresungsuwan, 2013, Prediction of mechanical properties of compatibilized styrene/natural-rubber blend by using reaction conditions: central composite design vs. Artificial neural networks, J Appl Polym Sci, 127, 356, 10.1002/app.37550 Liang, 2000, Rubber toughening in polypropylene: a review, J Appl Polym Sci, 77, 409, 10.1002/(SICI)1097-4628(20000711)77:2<409::AID-APP18>3.0.CO;2-N Mina, 2004, Microhardness studies of PMMA/natural rubber blends, J Appl Polym Sci, 91, 205, 10.1002/app.13246 Ishida, 2009, Toughening of poly(L-lactide) by melt blending with rubbers, J Appl Polym Sci, 113, 558, 10.1002/app.30134 Bitinis, 2011, Structure and properties of polylactide/natural rubber blends, Mater Chem Phys, 129, 823, 10.1016/j.matchemphys.2011.05.016 Zhang, 2013, Thermal, mechanical and rheological properties of polylactide toughened by expoxidizednatural rubber, Mater Des, 45, 198, 10.1016/j.matdes.2012.09.024 Kaseem, 2017, A review on recent researches on polylactic acid/carbon nanotube composites, Polym Bull, 74, 2921, 10.1007/s00289-016-1861-6 Desa, 2016, Influence of rubber content on mechanical, thermal, and morphological behavior of natural rubber toughened poly(lactic acid)-multiwalled carbon nanotube nanocomposites, J Appl Polym Sci, 133, 44344 Nasti, 2016, Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends, Polymer, 99, 193, 10.1016/j.polymer.2016.06.058 Jang, 2015, Influence of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of polycarbonate/poly(lactic acid)/LA-g-MWCNT composites, Macromol Res, 23, 916, 10.1007/s13233-015-3129-7 Lee, 2014, Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes, Compos Sci Technol, 103, 78, 10.1016/j.compscitech.2014.08.019 Park, 2013, Effect of multi-walled carbon nanotube dispersion on the electrical and rheological properties of poly(propylene carbonate)/poly(lactic acid)/multi-walled carbon nanotube composites, J Mater Sci, 48, 481, 10.1007/s10853-012-6762-y Ko, 2009, Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites, Polym Bull, 63, 125, 10.1007/s00289-009-0072-9 Wu, 2009, Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend, Biomacromolecules, 10, 417, 10.1021/bm801183f Xiu, 2013, Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(L-lactide)/poly(ether)urethane blends, Express Polym Lett, 7, 261, 10.3144/expresspolymlett.2013.24 Xiu, 2014, Improving impact toughness of polylactide/poly (ether) urethane blends via designing the phase morphology assisted by hydrophilic silica nanoparticles, Polymer, 55, 1593, 10.1016/j.polymer.2014.01.057 Zhang, 2012, Morphology and rheology of poly(L-lactide)/polystyrene blends filled with silica nanoparticles, J Mater Sci, 47, 1339, 10.1007/s10853-011-5908-7 Xiu, 2014, Formation of new electric double percolation via carbon black induced co-continuous like morphology, RSC Adv, 4, 37193, 10.1039/C4RA06836J Jiang, 2009, Properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/nanoparticle ternary composites, Ind Eng Chem Res, 48, 7594, 10.1021/ie900576f Pickering, 2016, A review of recent developments in natural fibre composites and their mechanical performance, Compos Part A, 083, 98, 10.1016/j.compositesa.2015.08.038 Porras, 2012, Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric, Compos Part B, 43, 2782, 10.1016/j.compositesb.2012.04.039 Bajpai, 2014, Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber, J Thermoplast Compos Mater, 27, 52, 10.1177/0892705712439571 Sajna, 2016, Effect of poly (lactic acid)-graft-glycidyl methacrylate as a compatibilizer on properties of poly (lactic acid)/banana fiber biocomposites, Polym Adv Technol, 27, 515, 10.1002/pat.3698 Xia, 2016, Modification of flax fiber surface and its compatibilization in polylactic acid/flax composites, Iran Polym J, 25, 25, 10.1007/s13726-015-0395-3 Bocz, 2014, Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system, Polym Degrad Stab, 106, 63, 10.1016/j.polymdegradstab.2013.10.025 Shukor, 2014, Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites, Mater Des, 54, 425, 10.1016/j.matdes.2013.07.095 Plackett, 2003, Biodegradable composites based on l-polylactide and jute fibres, Compos Part A, 63, 1287 Boubekeur, 2015, Valorization of waste jute fibers in developing low-density polyethylene/poly lactic acid bio-basedcomposites, J Reinf Plast Comp, 34, 649, 10.1177/0731684415576354 Ishiaku, 2007, Effects of fiber content and alkali treatment on the mechanical and morphological properties of poly(lactic acid)/poly(caprolactone) blend jute fiber-filled biodegradable composites, J Biobased Mater Bio, 1, 78, 10.1166/jbmb.2007.1981 Goriparthi, 2012, Processing and characterization of jute fiber reinforced hybrid biocomposites based on polylactide/polycaprolactone blends, Polym Compos, 33, 237, 10.1002/pc.22145 Masirek, 2007, Composites of poly(L-lactide) with hemp fibers: morphology and thermal and mechanical properties, J Appl Polym Sci, 105, 255, 10.1002/app.26090 Shumao, 2010, Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramiefiber-reinforced poly(lactic acid) biocomposites, Polym Int, 59, 242, 10.1002/pi.2715 Johari, 2016, Influence of different treated cellulose fibers on the mechanical and thermal properties of poly(lactic acid), ACS Sustain Chem Eng, 4, 1619, 10.1021/acssuschemeng.5b01563 Dong, 2014, Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties, Compos Part A, 63, 76, 10.1016/j.compositesa.2014.04.003 Wu, 2012, Polycaprolactone-based green renewable ecocomposites made from rice straw fiber: characterization and assessment of mechanical and thermal properties, Ind Eng Chem Res, 51, 3329, 10.1021/ie202002p 2016 Dufresne, 2017, Cellulose nanomaterial reinforced polymer nanocomposites, Curr Opin Colloid Interface Sci, 29, 1, 10.1016/j.cocis.2017.01.004 Sullivan, 2015, Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films, Materials, 8, 8106, 10.3390/ma8125447 Arjmandi, 2015, Effect of microcrystalline cellulose on biodegradability, tensile and morphological properties of montmorillonite reinforced polylactic acid nanocomposites, Fiber Polym, 16, 2284, 10.1007/s12221-015-5507-3 Trifol, 2016, Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance, Polym Int, 65, 988, 10.1002/pi.5154 Hong, 2013, Preparation and physical properties of polylactide/ cellulose Nanowhisker/Nanoclay composites, Polym Compos, 34, 293, 10.1002/pc.22413 Eng, 2014, Enhancement of mechanical and dynamic mechanical properties of hydrophilic nanoclay reinforced polylactic acid/polycaprolactone/oil palm mesocarp fiber hybrid composites, Int J Polym Sci, 10.1155/2014/715801 Harris, 2008, Improving mechanical performance of injection molded PLA by controlling crystallinity, J Appl Polym Sci, 107, 2246, 10.1002/app.27261 Pilla, 2010, Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends, Mater Sci Eng C, 30, 255, 10.1016/j.msec.2009.10.010 Phetwarotai, 2016, Isothermal crystallization behaviors and kinetics of nucleated polylactide/poly(butylene adipate-co-terephthalate) blend films with talc, J Therm Anal Calorim, 126, 1797, 10.1007/s10973-016-5669-2 Tri, 2013, Crystallization behavior of poly(lactide)/poly(b-hydroxybutyrate)/talc composites, J Appl Polym Sci, 129, 3355, 10.1002/app.39056 Piekarska, 2016, Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibres, Compos Part A, 82, 34, 10.1016/j.compositesa.2015.11.019 Bhattacharya, 2016, Polymer nanocomposites–a comparison between carbon nanotubes, graphene, and clay as nanofillers, Materials, 9, 262, 10.3390/ma9040262 Kassem, 2016, Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review, Eur Polym J, 79, 36, 10.1016/j.eurpolymj.2016.04.011 Leja, 2010, Polymer biodegradation and biodegradable polymers-a review, Pol Environ Stud, 19, 255 Weng, 2013, Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil Environments, Polym Test, 32, 60, 10.1016/j.polymertesting.2012.09.014 Shanshan, 2017, Biodegradation behavior and modelling of soil burial effect on degradation rate of PLA blended with starch and wood flour, Colloids Surf B Biointerfaces, 159, 800, 10.1016/j.colsurfb.2017.08.056 Cong, 2012, A novel enzymatic biodegradable route for PLA/EVA blends under agricultural soil of Vietnam, Mater Sci Eng C, 32, 558, 10.1016/j.msec.2011.12.012 Baena, 2016, Design of biodegradable blends based on PLA and PCL: from morphological, thermal and mechanical studies to shape memory behavior, Polym Degrad Stab, 132, 97, 10.1016/j.polymdegradstab.2016.03.037 Dharmalingam, 2015, Soil degradation of polylactic acid/polyhydroxyalkanoate-based nonwoven mulches, J Polym Environ, 23, 302, 10.1007/s10924-015-0716-9 Sikorska, 2015, Degradability of polylactide and its blend with poly[(R,S)- 3-hydroxybutyrate] in industrial composting and compost extract, Int Biodeterior Biodegrad, 101, 32, 10.1016/j.ibiod.2015.03.021 Jaso, 2015, Biodegradability study of polylactic acid/thermoplastic polyurethane blends, Polym Test, 47, 1, 10.1016/j.polymertesting.2015.07.011 Petrovic, 2010, Biodegradation of thermoplastic polyurethanes from vegetable oils, J Polym Environ, 18, 94, 10.1007/s10924-010-0194-z Arrieta, 2014, Disintegrability under composting conditions of plasticized PLA-PHB blends, Polym Degrad Stab, 108, 307, 10.1016/j.polymdegradstab.2014.01.034 Akrami, 2016, A new approach in compatibilization of the poly(lactic acid)/ thermoplastic starch (PLA/TPS) blends, Carbohydr Polym, 144, 254, 10.1016/j.carbpol.2016.02.035 Oyama, 2011, Water-disintegrative and biodegradable blends containing poly(L-lactic acid) and poly(butylene adipate-co-terephthalate), J Polym Sci Part B Polym Phys, 49, 342, 10.1002/polb.22193 Yew, 2005, Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites, Polym Degrad Stab, 90, 488, 10.1016/j.polymdegradstab.2005.04.006 Palsikowski, 2017, Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender, J Polym Environ, 26, 330, 10.1007/s10924-017-0951-3 Dong, 2013, Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/ poly(butylene adipate-co-terephthalate) blends, Int J Mol Sci, 14, 20189, 10.3390/ijms141020189 Malwela, 2015, Enzymatic degradation behavior of nanoclay reinforced biodegradable PLA/PBSA blend composites, Int J Biol Maceromol, 77, 131, 10.1016/j.ijbiomac.2015.03.018 Girdthep, 2016, Effect of silver-loaded kaolinite on real ageing, hydrolytic degradation, and biodegradation of composite blown films based on poly(lactic acid) and poly(butylene adipate-co-terephthalate), Eur Polym J, 82, 244, 10.1016/j.eurpolymj.2016.07.020 Luzi, 2016, Production and characterization of PLA PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres, Ind Crops Prod, 93, 276, 10.1016/j.indcrop.2016.01.045 Shayan, 2015, Effect of modified starch and nanoclay particles on biodegradability and mechanical properties of cross-linked poly lactic acid, Carbohydr Polym, 124, 237, 10.1016/j.carbpol.2015.02.001 Haque, 2017, Effect of reactive functionalization on properties and degradability of poly(lactic acid)/poly(vinyl acetate) nanocomposites with cellulose nanocrystals, React Funct Polym, 110, 1, 10.1016/j.reactfunctpolym.2016.11.003 Chumeka, 2015, Bio-based diblock copolymers prepared from poly(lactic acid) and natural rubber, J Appl Polym Sci, 132, 4126, 10.1002/app.41426 Chumeka, 2014, Bio-based triblock copolymers from natural rubber and poly(lactic acid): synthesis and application in polymer blending, Polymer, 55, 4478, 10.1016/j.polymer.2014.06.091 Maroufkhani, 2017, Polylactide (PLA) and acrylonitrile butadiene rubber (NBR) blends: the effect of ACN content on morphology, compatibility and mechanical properties, Polymer, 115, 37, 10.1016/j.polymer.2017.03.025 Jaratrotkamjorn, 2012, Toughness enhancement of poly(lactic acid) by melt blending with natural rubber, J Appl Polym Sci, 124, 5027 Pongtanayu, 2013, The Effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends, Energy Procedia, 34, 888, 10.1016/j.egypro.2013.06.826 Wang, 2016, Highly toughened polylactide/epoxidized poly(styrene-bbutadiene-b-styrene) blends with excellent tensile performance, Eur Polym J, 85, 92, 10.1016/j.eurpolymj.2016.10.019 Wang, 2016, Highly toughened polylactide with epoxidized polybutadiene by in-situ reactive compatibilization, Polymer, 92, 74, 10.1016/j.polymer.2016.03.081 Singh, 2011, Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends, Polym Bull, 66, 939, 10.1007/s00289-010-0367-x Hamad, 2014, Effect of acrylonitrile-butadiene-styrene on flow behavior and mechanical properties of polylactic acid/low density polyethylene blend, Asia Pac J Chem Eng, 9, 349, 10.1002/apj.1802 Park, 2011, Effects of compatibilizers and hydrolysis on the mechanical and rheological properties of Polypropylene/EPDM/Poly(lactic acid) ternary blends, Macromol Res, 19, 105, 10.1007/s13233-011-0215-3 Xu, 2015, Reactive compatibilization of polylactide/polypropylene blends, Ind Eng Chem Res, 54, 6108, 10.1021/acs.iecr.5b00882 Kanzawa, 2011, Mechanical properties and morphological changes of poly(lactic acid)/polycarbonate/poly(butylene adipate-co- terephthalate) blend through reactive processing, J Appl Polym Sci, 121, 2008, 10.1002/app.33916 Zhang, 2017, High melt strength and high toughness PLLA/PBS blends by copolymerization and in situ reactive compatibilization, Ind Eng Chem Res, 56, 52, 10.1021/acs.iecr.6b03151 Cabedo, 2006, Optimization of biodegradable nanocomposites based on a PLA/PCL blends for food packaging applications, Macromol Symp, 233, 191, 10.1002/masy.200690017 Jain, 2010, A new biodegradable flexible composite sheet from poly(lactic acid)/poly(ε-caprolactone) blends and micro-talc, Macromol Mater Eng, 295, 750, 10.1002/mame.201000063 Modi, 2013, Assessing the mechanical, phase inversion, and rheological properties of poly-[(R)-3-hydroxybutyrate-co-(R)-3- hydroxyvalerate] (PHBV) blended with poly-(L-lactic acid) (PLA), Eur Polym J, 49, 3681, 10.1016/j.eurpolymj.2013.07.036 Wang, 2008, Mechanical, thermal and degradation properties of poly(d,l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend, Polym Degrad Stab, 93, 1364, 10.1016/j.polymdegradstab.2008.03.026 Gonzalez-Ausejo, 2017, Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)–poly(lactic acid) blends with diisocyanates, J Appl Polym Sci, 134, 44806, 10.1002/app.44806 Arrieta, 2015, Development of flexible materials based on plasticized electrospun PLA-PHB blends: structural, thermal, mechanical and disintegration properties, Eur Polym J, 73, 433, 10.1016/j.eurpolymj.2015.10.036 Chen, 2003, Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials, 24, 1167, 10.1016/S0142-9612(02)00466-0 Kelnar, 2017, Graphite nanoplatelets-modified PLA/PCL: effect of blend ratio and nanofiller localization on structure and properties, J Mech Behav Biomed Mater, 71, 271, 10.1016/j.jmbbm.2017.03.028 Bai, 2012, Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix, ACS Appl Mater Interfaces, 4, 897, 10.1021/am201564f Yuan, 2009, Preparation, characterization, and foaming behavior of poly(lactic acid)/poly(butylene adipate-co-butylene terephthalate) blend, Polym Eng Sci, 49, 1004, 10.1002/pen.21287 Wu, 2017, Mechanical properties and phase morphology of super-tough PLA/PBAT/ EMA-GMA multicomponent blends, Mater Lett, 192, 17, 10.1016/j.matlet.2017.01.063 Zhang, 2013, Preparation and properties of biodegradable poly(lactic acid)/ poly(butylene adipate-co-terephthalate) blend with epoxy functional styrene acrylic copolymer as reactive agent, J Polym Environ, 21, 286, 10.1007/s10924-012-0448-z Zhang, 2014, Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance, ACS Appl Mater Interfaces, 6, 12436, 10.1021/am502337u Lu, 2017, Morphology and properties of biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends with different viscosity ratio, Polym Test, 60, 58, 10.1016/j.polymertesting.2017.03.008 Malinowski, 2016, Mechanical properties of PLA/PCL blends crosslinked by electron beam and TAIC additive, Chem Phys Lett, 662, 91, 10.1016/j.cplett.2016.09.022 Yang, 2015, Preparation and characterization of thermoplastic starches and their blends with poly(lactic acid), Int J Biol Macromol, 77, 273, 10.1016/j.ijbiomac.2015.03.053 Hemvichian, 2016, Enhancing compatibility between poly(lactic acid) and thermoplastic starch using admicellar polymerization, J Appl Polym Sci, 133, 43755, 10.1002/app.43755 Kenawy, 2002, Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend, J Control Release, 81, 57, 10.1016/S0168-3659(02)00041-X Kramschuster, 2010, An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds, J Biomed Mater Res B Appl Biomater, 92, 366 Ramdhanie, 2006, Thermal and mechanical characterization of electrospun blends of poly(lactic acid) and poly(glycolic acid), Polym J, 38, 1137, 10.1295/polymj.PJ2006062 Athanasiou, 1998, Orthopaedic applications for PLA-PGA biodegradable polymers, Arthroscopy, 14, 726, 10.1016/S0749-8063(98)70099-4 Frydrych, 2015, Biomimetic poly(glycerol sebacate)/poly(L-lactic acid) blend scaffolds for adipose tissue engineering, Acta Biomater, 18, 40, 10.1016/j.actbio.2015.03.004 Jeong, 2004, In vivo biocompatibilty and degradation behavior of elastic poly(l-lactide-co-e-caprolactone) scaffolds, Biomaterials, 25, 5939, 10.1016/j.biomaterials.2004.01.057 Rodríguez, 2004, Biomaterials for orthopaedics, Appl Eng Mechan Med GED, 1 Liu, 2011, Evaluation of two polymeric blends (EVA/PLA and EVA/PEG) as coating film materials for paclitaxel-eluting stent application, J Mater Sci Mater Med, 22, 327, 10.1007/s10856-010-4213-3 Yao, 2007, Physical characteristics of PLLA/PMMA blends and their CO2 blowing foams, J Cell Plast, 43, 385, 10.1177/0021955X07079209 Zhao, 2012, Phase morphology, physical properties, and biodegradation behavior of novel PLA/PHBHHx blends, J Biomed Mater Res Part B, 100B, 23, 10.1002/jbm.b.31915 Dong, 2013, Effect of partial crosslinking on morphology and properties of the poly(b-hydroxybutyrate)/poly(D,L-lactic acid) blends, Polym Degrad Stab, 98, 1549, 10.1016/j.polymdegradstab.2013.06.033 Arrieta, 2014, PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties, Polym Degrad Stab, 107, 139, 10.1016/j.polymdegradstab.2014.05.010 Armentano, 2015, Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems, Express Polym Lett, 9, 583, 10.3144/expresspolymlett.2015.55 Soroudi, 2013, Recycling of bioplastics, their blends and biocomposites: a review, Eur Polym J, 49, 2839, 10.1016/j.eurpolymj.2013.07.025 Silverajah, 2012, Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized palm olein blend, Molecules, 17, 11729, 10.3390/molecules171011729 Harris, 2013, Durability of polylactide-based polymer blends for injection-molded applications, J Appl Polym Sci, 128, 2136 Yuryev, 2016, Hydrolytic stability of polycarbonate/poly(lactic acid) blends and its evaluation via poly(lactic) acid median melting point depression, Polym Degrad Stab, 134, 227, 10.1016/j.polymdegradstab.2016.10.011 2009, vol. 4, 26 Ploypetchara, 2014, Blend of polypropylene/poly(lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties, Energy Procedia, 56, 201, 10.1016/j.egypro.2014.07.150 Broniarz, 2015, Preparation and characterization of gel polymer electrolytes based on electrospun PLA/PHB membranes for lithium-ion batteries, ECS Trans, 70, 79, 10.1149/07001.0079ecst Katada, 2005, Relationship between electrical resistivity and particle dispersion state for carbon black filled poly (ethylene-co -vinyl acetate)/poly (L-lactic acid) blend, Colloid Polym Sci, 284, 134, 10.1007/s00396-005-1348-8 Song, 2015, Biocompatible shape memory polymer actuators with high force capabilities, Eur Polym J, 67, 186, 10.1016/j.eurpolymj.2015.03.067 Mi, 2013, Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding, Mater Sci Eng C, 33, 4767, 10.1016/j.msec.2013.07.037 Liao, 2014, Unique interfacial and confined porous morphology of PLA/PS blends in supercritical carbon dioxide, RSC Adv, 4, 45109, 10.1039/C4RA07592G Peng, 2012, Electrospun conductive polyaniline-polylactic acid composite nanofibers as counter electrodes for rigid and flexible dye-sensitized solar cells, RSC Adv, 2, 652, 10.1039/C1RA00618E Taboas, 2003, Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymerceramic scaffolds, Biomaterials, 24, 181, 10.1016/S0142-9612(02)00276-4 George, 2010, Hierarchical scaffolds via combined macro- and micro-phase separation, Biomaterials, 31, 641, 10.1016/j.biomaterials.2009.09.094 Singh, 2012, Degradation behaviors of linear low-density polyethylene and poly(L-lactic acid) blends, J Appl Polym Sci, 124, 1993, 10.1002/app.35216