Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Plackett, 2003, Biodegradable composites based on L-polylactide and jute fibres, Compos. Sci. Technol., 63, 1287, 10.1016/S0266-3538(03)00100-3
Sapuan, S.M., and Ilyas, R.A. (2020). Review on Green Technology Pyrolysis for Plastic Wastes. Proceedings of the 7th Postgraduate Seminar on Natural Fibre Reinforced Polymer Composites 2020, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia.
Syafiq, R., Sapuan, S.M., Zuhri, M.Y.M., Ilyas, R.A., Nazrin, A., Sherwani, S.F.K., and Khalina, A. (2020). Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers, 12.
Atikah, 2019, Degradation and physical properties of sugar palm starch/sugar palm nanofibrillated cellulose bionanocomposite, Polimery, 64, 27, 10.14314/polimery.2019.10.5
Drumright, 2000, Polylactic acid technology, Adv. Mater., 12, 1841, 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
Nurazzi, 2021, Composites based on conductive polymer with carbon nanotubes in DMMP gas sensors—An overview, Polimery, 66, 85, 10.14314/polimery.2021.2.1
Ali, 2020, The nexus of population, GDP growth, electricity generation, electricity consumption and carbon emissions output in Malaysia, Int. J. Energy Econ. Policy, 10, 84, 10.32479/ijeep.8987
Nazrin, 2020, Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications, Front. Chem., 8, 1, 10.3389/fchem.2020.00213
Oksman, 2003, Natural fibres as reinforcement in polylactic acid (PLA) composites, Compos. Sci. Technol., 63, 1317, 10.1016/S0266-3538(03)00103-9
Graupner, 2008, Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites, J. Mater. Sci., 43, 5222, 10.1007/s10853-008-2762-3
Ilyas, R.A., Sapuan, S.M., Atikah, M.S.N., Asyraf, M.R.M., Rafiqah, S.A., Aisyah, H.A., Nurazzi, N.M., and Norrrahim, M.N.F. (2020). Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Text. Res. J., 004051752093239.
Sabaruddin, F.A., Paridah, M.T., Sapuan, S.M., Ilyas, R.A., Lee, S.H., Abdan, K., Mazlan, N., Roseley, A.S.M., and Abdul Khalil, H.P.S. (2020). The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers, 13.
Ayu, R.S., Khalina, A., Harmaen, A.S., Zaman, K., Isma, T., Liu, Q., Ilyas, R.A., and Lee, C.H. (2020). Characterization Study of Empty Fruit Bunch (EFB) Fibers Reinforcement in Poly(Butylene) Succinate (PBS)/Starch/Glycerol Composite Sheet. Polymers, 12.
Wambua, 2003, Natural fibres: Can they replace glass in fibre reinforced plastics?, Compos. Sci. Technol., 63, 1259, 10.1016/S0266-3538(03)00096-4
Asyraf, M.R.M., Ishak, M.R., Sapuan, S.M., and Yidris, N. (2021). Comparison of Static and Long-term Creep Behaviors between Balau Wood and Glass Fiber Reinforced Polymer Composite for Cross-arm Application. Fibers Polym., 22.
Asyraf, M.R.M., Ishak, M.R., Sapuan, S.M., and Yidris, N. (2021). Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties. Appl. Sci., 11.
Asyraf, M.R.M., Ishak, M.R., Sapuan, S.M., Yidris, N., and Ilyas, R.A. (2020). Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol.
Suriani, M.J., Radzi, F.S.M., Ilyas, R.A., Petrů, M., Sapuan, S.M., and Ruzaidi, C.M. (2021). Flammability, Tensile, and Morphological Properties of Oil Palm Empty Fruit Bunches Fiber/Pet Yarn-Reinforced Epoxy Fire Retardant Hybrid Polymer Composites. Polymers, 13.
Asyraf, M.R.M., Rafidah, M., Azrina, A., and Razman, M.R. (2021). Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: A comprehensive review on chemical treatments. Cellulose.
Jumaidin, 2019, Water Transport and Physical Properties of Sugarcane Bagasse Fibre Reinforced Thermoplastic Potato Starch Biocomposite, J. Adv. Res. Fluid Mech. Therm. Sci., 61, 273
Ilyas, 2020, The Preparation Methods and Processing of Natural Fibre Bio-polymer Composites, Curr. Org. Synth., 16, 1068, 10.2174/157017941608200120105616
Nurazzi, N.M., Asyraf, M.R.M., Khalina, A., Abdullah, N., Aisyah, H.A., Rafiqah, S.A., Sabaruddin, F.A., Kamarudin, S.H., Norrrahim, M.N.F., and Ilyas, R.A. (2021). A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers, 13.
Asyraf, M.R.M., Rafidah, M., Ishak, M.R., Sapuan, S.M., Ilyas, R.A., and Razman, M.R. (2020). Integration of TRIZ, Morphological Chart and ANP method for development of FRP composite portable fire extinguisher. Polym. Compos., 1–6.
Nurazzi, 2020, Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites, J. Mater. Res. Technol., 9, 1606, 10.1016/j.jmrt.2019.11.086
Aisyah, 2019, Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels, Int. J. Polym. Sci., 2019, 5258621, 10.1155/2019/5258621
Norizan, 2020, Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites, Polimery, 65, 34
Sapuan, S.M., Aulia, H.S., Ilyas, R.A., Atiqah, A., Dele-Afolabi, T.T., Nurazzi, M.N., Supian, A.B.M., and Atikah, M.S.N. (2020). Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. Polymers, 12.
Asyraf, M.R.M., Ishak, M.R., Sapuan, S.M., Yidris, N., Ilyas, R.A., Rafidah, M., and Razman, M.R. (2020). Evaluation of Design and Simulation of Creep Test Rig for Full-Scale Crossarm Structure. Adv. Civ. Eng., 2020.
Asyraf, 2020, Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach, J. Mater. Res. Technol., 9, 2357, 10.1016/j.jmrt.2019.12.067
Syafri, 2019, Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites, J. Mater. Res. Technol., 8, 6223, 10.1016/j.jmrt.2019.10.016
Abral, 2020, Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film, J. Mater. Res. Technol., 9, 2477, 10.1016/j.jmrt.2019.12.078
Jumaidin, 2019, Characteristics of Cogon Grass Fibre Reinforced Thermoplastic Cassava Starch Biocomposite: Water Absorption and Physical Properties, J. Adv. Res. Fluid Mech. Therm. Sci., 62, 43
Rozilah, A., Jaafar, C.N.A., Sapuan, S.M., Zainol, I., and Ilyas, R.A. (2020). The Effects of Silver Nanoparticles Compositions on the Mechanical, Physiochemical, Antibacterial, and Morphology Properties of Sugar Palm Starch Biocomposites for Antibacterial Coating. Polymers, 12.
Ariffin, H., Sapuan, S.M., and Hassan, M.A. (2019). Design and Fabrication of a Shoe Shelf From Kenaf Fiber Reinforced Unsaturated Polyester Composites. Lignocellulose for Future Bioeconomy, Elsevier.
Asyraf, 2020, Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review, Int. J. Polym. Sci., 2020, 8878300, 10.1155/2020/8878300
Asyraf, 2019, Conceptual design of creep testing rig for full-scale cross arm using TRIZ-Morphological chart-analytic network process technique, J. Mater. Res. Technol., 8, 5647, 10.1016/j.jmrt.2019.09.033
Hashmi, S., Batalha, G.F., and Van Tyne, C.J. (2014). Application and Advances in Microprocessing of Natural Fiber (Jute)–Based Composites. Comprehensive Materials Processing, Elsevier.
Chemiefaser, I. (2019, December 02). Worldwide Production Volume of Chemical and Textile Fibers from 1975 to 2018. Available online: https://www.statista.com/statistics/263154/worldwide-production-volume-of-textile-fibers-since-1975/.
Migneault, 2008, Effect of fiber length on processing and properties of extruded wood-fiber/HDPE composites, J. Appl. Polym. Sci., 110, 1085, 10.1002/app.28720
Mukherjee, 2011, PLA Based Biopolymer Reinforced with Natural Fibre: A Review, J. Polym. Environ., 19, 714, 10.1007/s10924-011-0320-6
Martins, 2004, Scanning electron microscopy study of raw and chemically modified sisal fibers, J. Appl. Polym. Sci., 94, 2333, 10.1002/app.21203
Ilyas, 2018, Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: A Review, Curr. Anal. Chem., 14, 203, 10.2174/1573411013666171003155624
Ferreira, 2018, Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: From a micro- to a nano-scale view, Appl. Surf. Sci., 436, 1113, 10.1016/j.apsusc.2017.12.137
Abral, 2020, Transparent and antimicrobial cellulose film from ginger nanofiber, Food Hydrocoll., 98, 105266, 10.1016/j.foodhyd.2019.105266
Ilyas, 2018, Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata), Carbohydr. Polym., 181, 1038, 10.1016/j.carbpol.2017.11.045
Ilyas, 2019, Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior, Int. J. Biol. Macromol., 123, 379, 10.1016/j.ijbiomac.2018.11.124
Ilyas, 2017, Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre, BioResources, 12, 8734, 10.15376/biores.12.4.8734-8754
Ibrahim, 2019, Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensiveapproach from macro to nano scale, J. Mater. Res. Technol., 8, 2753, 10.1016/j.jmrt.2019.04.011
Alemdar, 2008, Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls, Bioresour. Technol., 99, 1664, 10.1016/j.biortech.2007.04.029
George, 2016, Isolation and characterization of cellulose nanofibrils from arecanut husk fibre, Carbohydr. Polym., 142, 158, 10.1016/j.carbpol.2016.01.015
Chirayil, 2014, Isolation and characterization of cellulose nanofibrils from Helicteres isora plant, Ind. Crops Prod., 59, 27, 10.1016/j.indcrop.2014.04.020
Cherian, 2010, Isolation of nanocellulose from pineapple leaf fibres by steam explosion, Carbohydr. Polym., 81, 720, 10.1016/j.carbpol.2010.03.046
Syafri, E., Kasim, A., Abral, H., and Asben, A. (2018). Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment. J. Nat. Fibers, 1145–1155.
Megashah, L.N., Ariffin, H., Zakaria, M.R., and Hassan, M.A. (2018). Properties of Cellulose Extract from Different Types of Oil Palm Biomass. IOP Conf. Ser. Mater. Sci. Eng., 368.
Jonoobi, 2011, Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process, Cellulose, 18, 1085, 10.1007/s10570-011-9546-7
Pessan, 2010, Cellulose nanofibers from curaua fibers, Cellulose, 17, 1183, 10.1007/s10570-010-9453-3
Tibolla, 2014, Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment, LWT Food Sci. Technol., 59, 1311, 10.1016/j.lwt.2014.04.011
Bondancia, 2011, Sugarcane bagasse whiskers: Extraction and characterizations, Ind. Crops Prod., 33, 63, 10.1016/j.indcrop.2010.08.009
Jonoobi, 2009, Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers, BioResources, 4, 626, 10.15376/biores.4.2.626-639
Bendahou, 2009, Physico-chemical characterization of palm from Phoenix Dactylifera-L, preparation of cellulose whiskers and natural rubber-based nanocomposites, J. Biobased Mater. Bioenergy, 3, 81, 10.1166/jbmb.2009.1011
Chan, 2013, Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood, BioResources, 8, 785
Abral, 2018, Characterization of Tapioca Starch Biopolymer Composites Reinforced with Micro Scale Water Hyacinth Fibers, Starch Staerke, 70, 1, 10.1002/star.201700287
Alemdar, 2008, Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties, Compos. Sci. Technol., 68, 557, 10.1016/j.compscitech.2007.05.044
Li, 2014, Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp, Carbohydr. Polym., 102, 136, 10.1016/j.carbpol.2013.11.021
Sheltami, 2012, Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius), Carbohydr. Polym., 88, 772, 10.1016/j.carbpol.2012.01.062
Mohanty, 2001, Surface modifications of natural fibres and peformance of the resulting biocomposite, Compos. Interfaces, 8, 313, 10.1163/156855401753255422
Sawpan, M.A., Pickering, K.L., and Fernyhough, A. (2011). Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos. Part A Appl. Sci. Manuf.
Li, 2007, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review, J. Polym. Environ., 15, 25, 10.1007/s10924-006-0042-3
Sapuan, S.M., and Ilyas, R.A. (2020). Effect of sorbitol and glycerol plasticizer and concentration on physical properties of corn starch (Zea mays) biodegradable films. Proceedings of the 7th Postgraduate Seminar on Natural Fibre Reinforced Polymer Composites 2020, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia.
Kandemir, 2005, Production of antimicrobial films by incorporation of partially purified lysozyme into biodegradable films of crude exopolysaccharides obtained from Aureobasidium pullulans fermentation, Food Technol. Biotechnol., 43, 343
Auras, R., Lim, L., Selke, S.E.M., and Tsuji, H. (2010). Industrial Production of High Molecular Weight Poly(Lactic Acid). Poly(Lactic Acid), John Wiley & Sons, Inc.
Lim, 2008, Processing technologies for poly(lactic acid), Prog. Polym. Sci., 33, 820, 10.1016/j.progpolymsci.2008.05.004
Rasal, 2010, Poly(lactic acid) modifications, Prog. Polym. Sci., 35, 338, 10.1016/j.progpolymsci.2009.12.003
Arrieta, M.P., Samper, M.D., Aldas, M., and López, J. (2017). On the use of PLA-PHB blends for sustainable food packaging applications. Materials, 10.
Devaux, 2011, PLA/carbon nanotubes multifilament yarns for relative humidity textile sensor, J. Eng. Fiber. Fabr., 6, 155892501100600300
Tanase, 2014, PLA/chitosan/keratin composites for biomedical applications, Mater. Sci. Eng. C, 40, 242, 10.1016/j.msec.2014.03.054
Pozo Morales, A., Güemes, A., Fernandez-Lopez, A., Carcelen Valero, V., and De La Rosa Llano, S. (2017). Bamboo–polylactic acid (PLA) composite material for structural applications. Materials, 10.
Pickering, 2016, Preparation and mechanical properties of novel bio-composite made of dynamically sheet formed discontinuous harakeke and hemp fibre mat reinforced PLA composites for structural applications, Ind. Crops Prod., 84, 139, 10.1016/j.indcrop.2016.02.005
Kumar, 2017, Fibrous biocomposites from nettle (Girardinia diversifolia) and poly (lactic acid) fibers for automotive dashboard panel application, Compos. Part B Eng., 130, 54, 10.1016/j.compositesb.2017.07.059
Mohanty, 2000, Biofibres, biodegradable polymers and biocomposites: An overview, Macromol. Mater. Eng., 24, 1, 10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
Nurazzi, 2019, Mechanical properties of sugar palm yarn/woven glass fiber reinforced unsaturated polyester composites: Effect of fiber loadings and alkaline treatment, Polimery, 64, 12, 10.14314/polimery.2019.10.3
Abral, H., Ariksa, J., Mahardika, M., Handayani, D., Aminah, I., Sandrawati, N., Sapuan, S.M., and Ilyas, R.A. (2019). Highly transparent and antimicrobial PVA based bionanocomposites reinforced by ginger nanofiber. Polym. Test., 106186.
Jumaidin, 2020, Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite, Int. J. Biol. Macromol., 146, 746, 10.1016/j.ijbiomac.2019.11.011
McLoughlin, J., and Sabir, T. (2017). Composite textiles used in high-performance apparel. High-Performance Apparel: Materials, Development, and Applications, Woodhead Publishing.
Mohd Nurazzi, N., Muhammad Asyraf, M.R., Khalina, A., Abdullah, N., Sabaruddin, F.A., Kamarudin, S.H., Ahmad, S., Mahat, A.M., Lee, C.L., and Aisyah, H.A. (2021). Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers, 13.
Sari, 2020, The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite, Polym. Test., 91, 106751, 10.1016/j.polymertesting.2020.106751
Amir, S.M.M., Sultan, M.T.H., Jawaid, M., Ariffin, A.H., Mohd, S., Salleh, K.A.M., Ishak, M.R., and Md Shah, A.U. (2018). Nondestructive testing method for Kevlar and natural fiber and their hybrid composites. Durab. Life Predict. Biocompos. Fibre Reinf. Compos. Hybrid Compos., 367–388.
Talreja, R., and Varna, J. (2016). Composite materials: Constituents, architecture, and generic damage. Modeling Damage, Fatigue and Failure of Composite Materials, Elsevier Ltd.
Ku, 2011, A review on the tensile properties of natural fiber reinforced polymer composites, Compos. Part B Eng., 42, 856, 10.1016/j.compositesb.2011.01.010
Jem, 2020, The development and challenges of poly (lactic acid) and poly (glycolic acid), Adv. Ind. Eng. Polym. Res., 3, 60
Jiménez-Gómez, C.P., and Cecilia, J.A. (2020). Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules, 25.
Saratale, 2021, A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams, Bioresour. Technol., 325, 124685, 10.1016/j.biortech.2021.124685
Siakeng, 2019, Natural fiber reinforced polylactic acid composites: A review, Polym. Compos., 40, 446, 10.1002/pc.24747
Hinchcliffe, 2016, Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials, Compos. Part B Eng., 95, 346, 10.1016/j.compositesb.2016.03.089
Holbery, 2006, Natural-fiber-reinforced polymer composites in automotive applications, Jom, 58, 80, 10.1007/s11837-006-0234-2
Dunne, 2016, A review of natural fibres, their sustainability and automotive applications, J. Reinf. Plast. Compos., 35, 1041, 10.1177/0731684416633898
Faruk, 2012, Biocomposites reinforced with natural fibers: 2000–2010, Prog. Polym. Sci., 37, 1552, 10.1016/j.progpolymsci.2012.04.003
2004, Mechanical properties of continuous natural fibre-reinforced polymer composites, Compos. Part A Appl. Sci. Manuf., 35, 339, 10.1016/j.compositesa.2003.09.012
Alkbir, 2016, Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review, Compos. Struct., 148, 59, 10.1016/j.compstruct.2016.01.098
Asaithambi, 2014, Bio-composites: Development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites, Fibers Polym., 15, 847, 10.1007/s12221-014-0847-y
Bajpai, 2013, Tribological behavior of natural fiber reinforced PLA composites, Wear, 297, 829, 10.1016/j.wear.2012.10.019
Graupner, 2009, Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas, Compos. Part A Appl. Sci. Manuf., 40, 810, 10.1016/j.compositesa.2009.04.003
Jiang, N., Yu, T., Li, Y., Pirzada, T.J., and Marrow, T.J. (2019). Hygrothermal aging and structural damage of a jute/poly (lactic acid) (PLA) composite observed by X-ray tomography. Compos. Sci. Technol.
Yu, 2009, Preparation and properties of short natural fiber reinforced poly(lactic acid) composites, Trans. Nonferrous Met. Soc. China Engl. Ed., 19, s651, 10.1016/S1003-6326(10)60126-4
Wallenberger, F.T., and Weston, N.E. (2004). Plastics and Composites from Polylactic Acid. Natural Fibers, Plastics and Composites, Springer.
Omar, 2020, Kenaf Fiber Reinforced Composite in the Automotive Industry, Encycl. Renew. Sustain. Mater., 5, 95
Sapuan, S.M., and Ilyas, R.A. (2020). Natural fibre: A promising source for the production of nanocellulose. Proceedings of the 7th Postgraduate Seminar on Natural Fibre Reinforced Polymer Composites 2020, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia.
Zhang, 2018, Polydopamine induced natural fiber surface functionalization: A way towards flame retardancy of flax/poly(lactic acid) biocomposites, Compos. Part B Eng., 154, 56, 10.1016/j.compositesb.2018.07.037
Pornwannachai, 2018, Fire-resistant natural fibre-reinforced composites from flame retarded textiles, Polym. Degrad. Stab., 154, 115, 10.1016/j.polymdegradstab.2018.05.019
Jang, 2012, Thermal stability and flammability of coconut fiber reinforced poly(lactic acid) composites, Compos. Part B Eng., 43, 2434, 10.1016/j.compositesb.2011.11.003
Sukmawan, 2016, Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber, Compos. Part B Eng., 84, 9, 10.1016/j.compositesb.2015.08.072
Bhat, 2012, Bamboo fibre reinforced biocomposites: A review, Mater. Des., 42, 353, 10.1016/j.matdes.2012.06.015
Gunti, 2018, Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass, Polym. Compos., 39, 1125, 10.1002/pc.24041
Elmessiry, 2016, Analysis of the wheat straw/flax fiber reinforced polymer hybrid composites, J. App. Mech. Eng, 5, 1
Nyambo, 2011, Effect of maleated compatibilizer on performance of PLA/wheat Straw-Based green composites, Macromol. Mater. Eng., 296, 710, 10.1002/mame.201000403
Sam, 2016, Tensile properties of rice straw fiber reinforced poly (lactic acid) biocomposites, Advanced Materials Research, Volume 1133, 598, 10.4028/www.scientific.net/AMR.1133.598
Ismail, 2011, Mechanical properties of rice straw fiber-reinforced polymer composites, Fibers Polym., 12, 648, 10.1007/s12221-011-0648-5
Ding, 2018, Mechanical properties and degradation characteristics of corn straw fibers/polylactic acid composite materials, J. Agric. Resour. Environ., 35, 455
Pradhan, 2010, Compostability and biodegradation study of PLA–wheat straw and PLA–soy straw based green composites in simulated composting bioreactor, Bioresour. Technol., 101, 8489, 10.1016/j.biortech.2010.06.053
Wang, H., Hassan, E., Memon, H., Elagib, T., and Abad AllaIdris, F. (2019). Characterization of natural composites fabricated from Abutilon-fiber-reinforced Poly (Lactic Acid). Processes, 7.
Ozyhar, 2020, Effect of functional mineral additive on processability and material properties of wood-fiber reinforced poly(lactic acid) (PLA) composites, Compos. Part A Appl. Sci. Manuf., 132, 105827, 10.1016/j.compositesa.2020.105827
Zhang, 2012, Study on poly(lactic acid)/natural fibers composites, J. Appl. Polym. Sci., 125, E526, 10.1002/app.36852
Du, 2014, Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites, Compos. Part B Eng., 56, 717, 10.1016/j.compositesb.2013.09.012
Dhand, 2015, A short review on basalt fiber reinforced polymer composites, Compos. Part B Eng., 73, 166, 10.1016/j.compositesb.2014.12.011
Sang, 2019, Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications, Compos. Part B Eng., 164, 629, 10.1016/j.compositesb.2019.01.085
Kurniawan, 2012, Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites, Compos. Part B Eng., 43, 1010, 10.1016/j.compositesb.2011.11.007
Khan, 2016, Studies on the mechanical properties of woven jute fabric reinforced poly(L-lactic acid) composites, J. King Saud Univ. Eng. Sci., 28, 69
Bergeret, 2011, Natural fibre-reinforced biofoams, Int. J. Polym. Sci., 2011, 569871, 10.1155/2011/569871
Jauhari, 2015, Natural Fibre Reinforced Composite Laminates—A Review, Mater. Today Proc., 2, 2868, 10.1016/j.matpr.2015.07.304
Nechwatal, 2003, Developments in the characterization of natural fibre properties and in the use of natural fibres for composites, Compos. Sci. Technol., 63, 1273, 10.1016/S0266-3538(03)00098-8
Kiekens, 2001, Thermoplastic pultrusion of natural fibre reinforced composites, Compos. Struct., 54, 355, 10.1016/S0263-8223(01)00110-6
Sujaritjun, 2013, Mechanical property of surface modified natural fiber reinforced PLA biocomposites, Energy Procedia, 34, 664, 10.1016/j.egypro.2013.06.798
Hu, 2007, Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites, J. Compos. Mater., 41, 1655, 10.1177/0021998306069878
Choi, 2012, Effects of surface treatment of ramie fibers in a ramie/poly(lactic acid) composite, Fibers Polym., 13, 217, 10.1007/s12221-012-0217-6
Baghaei, B., Skrifvars, M., Rissanen, M., and Ramamoorthy, S.K. (2014). Mechanical and thermal characterization of compression moulded polylactic acid natural fiber composites reinforced with hemp and lyocell fibers. J. Appl. Polym. Sci., 131.
Singh, 2011, Microwave Joining of Natural Fiber Reinforced Green Composites, Adv. Mater. Res., 410, 102, 10.4028/www.scientific.net/AMR.410.102
Neoh, 2011, Micro Palm and Kenaf Fibers Reinforced PLA Composite: Effect of Volume Fraction on Tensile Strength, Appl. Mech. Mater., 145, 1, 10.4028/www.scientific.net/AMM.145.1
Porras, 2016, Thermo-mechanical characterization of Manicaria Saccifera natural fabric reinforced poly-lactic acid composite lamina, Compos. Part A Appl. Sci. Manuf., 81, 105, 10.1016/j.compositesa.2015.11.008
Bax, 2008, Impact and tensile properties of PLA/Cordenka and PLA/flax composites, Compos. Sci. Technol., 68, 1601, 10.1016/j.compscitech.2008.01.004
Bledzki, 2010, Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres—A comparative study to PP, Compos. Sci. Technol., 70, 1687, 10.1016/j.compscitech.2010.06.005
Cheung, 2009, Natural fibre-reinforced composites for bioengineering and environmental engineering applications, Compos. Part B Eng., 40, 655, 10.1016/j.compositesb.2009.04.014
Guillou, 2019, 3D printing of continuous flax fibre reinforced biocomposites for structural applications, Mater. Des., 180, 107884, 10.1016/j.matdes.2019.107884
Bodros, 2007, Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?, Compos. Sci. Technol., 67, 462, 10.1016/j.compscitech.2006.08.024
Beck, 2010, Agrofibre reinforced poly(lactic acid) composites: Effect of moisture on degradation and mechanical properties, Compos. Part A Appl. Sci. Manuf., 41, 1628, 10.1016/j.compositesa.2010.07.011
Saba, 2015, Mechanical properties of kenaf fibre reinforced polymer composite: A review, Constr. Build. Mater., 76, 87, 10.1016/j.conbuildmat.2014.11.043
Sawpan, 2011, Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites, Compos. Part A Appl. Sci. Manuf., 42, 1189, 10.1016/j.compositesa.2011.05.003
Hughes, 2012, Defects in natural fibres: Their origin, characteristics and implications for natural fibre-reinforced composites, J. Mater. Sci., 47, 599, 10.1007/s10853-011-6025-3
Bledzki, 2001, Natural-fibre-reinforced polyurethane microfoams, Compos. Sci. Technol., 61, 2405, 10.1016/S0266-3538(01)00129-4
Teramoto, 2004, Biodegradation of aliphatic polyester composites reinforced by abaca fiber, Polym. Degrad. Stab., 86, 401, 10.1016/j.polymdegradstab.2004.04.026
Verma, 2013, Coir fibre reinforcement and application in polymer composites: A review, J. Mater. Environ. Sci., 4, 263
Takagi, 2007, Thermal conductivity of PLA-bamboo fiber composites, Adv. Compos. Mater. Off. J. Japan Soc. Compos. Mater., 16, 377
Nuthong, 2013, Impact property of flexible epoxy treated natural fiber reinforced PLA composites, Energy Procedia, 34, 839, 10.1016/j.egypro.2013.06.820
Al-Oqla, F.M., and Sapuan, S.M. (2020). Natural Polylactic Acid-Based Fiber Composites: A Review. Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers, Elsevier.
Chia, 2014, High-resolution direct 3D printed PLGA scaffolds: Print and shrink, Biofabrication, 7, 015002, 10.1088/1758-5090/7/1/015002
Mazzanti, V., Malagutti, L., and Mollica, F. (2019). FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties. Polymers, 11.
Jamshidian, 2010, Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies, Compr. Rev. Food Sci. Food Saf., 9, 552, 10.1111/j.1541-4337.2010.00126.x
Ilyas, 2020, Biopolymers and biocomposites: Chemistry and technology, Curr. Anal. Chem., 16, 500, 10.2174/157341101605200603095311
Castro, 2016, 3D printing of wood fibre biocomposites: From mechanical to actuation functionality, Mater. Des., 96, 106, 10.1016/j.matdes.2016.02.018
Ayrilmis, 2019, Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials, Int. J. Adv. Manuf. Technol., 102, 2195, 10.1007/s00170-019-03299-9
Matsuzaki, 2016, Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation, Sci. Rep., 6, 23058, 10.1038/srep23058
Zhao, 2019, Poplar as Biofiber Reinforcement in Composites for Large-Scale 3D Printing, ACS Appl. Bio Mater., 2, 4557, 10.1021/acsabm.9b00675
Champeau, 2020, 4D Printing of Hydrogels: A Review, Adv. Funct. Mater., 30, 1910606, 10.1002/adfm.201910606
Spiegel, 2020, 4D Printing at the Microscale, Adv. Funct. Mater., 30, 1907615, 10.1002/adfm.201907615
Zolfagharian, 2020, Closed-loop 4D-printed soft robots, Mater. Des., 188, 108411, 10.1016/j.matdes.2019.108411
Quanjin, 2020, Recent 3D and 4D intelligent printing technologies: A comparative review and future perspective, Procedia Comput. Sci., 167, 1210, 10.1016/j.procs.2020.03.434
Ma, 2020, Recent progress in 4D printing of stimuli-responsive polymeric materials, Sci. China Technol. Sci., 63, 532, 10.1007/s11431-019-1443-1
Subash, 2020, 4D printing of shape memory polymers, Eur. Polym. J., 134, 109771, 10.1016/j.eurpolymj.2020.109771
Zafar, 2020, 4D Printing: Future Insight in Additive Manufacturing, Met. Mater. Int., 26, 564, 10.1007/s12540-019-00441-w
Chu, H., Yang, W., Sun, L., Cai, S., Yang, R., Liang, W., Yu, H., and Liu, L. (2020). 4D Printing: A Review on Recent Progresses. Micromachines, 11.
Zolfagharian, A., Kaynak, A., Bodaghi, M., Kouzani, A.Z., Gharaie, S., and Nahavandi, S. (2020). Control-Based 4D Printing: Adaptive 4D-Printed Systems. Appl. Sci., 10.
Yang, 2020, Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics, Adv. Funct. Mater., 30, 1901693, 10.1002/adfm.201901693
Nautiyal, U., Sahu, N., and Gupta, D. (2020). Hydrogel: Preparation, Characterization and Applications. Asian Pacific J. Nurs. Health Sci., 3.
Zheng, 2020, Near-infrared-light regulated angiogenesis in a 4D hydrogel, Nanoscale, 12, 13654, 10.1039/D0NR02552F
Requile, 2017, Natural fibres actuators for smart bio-inspired hygromorph biocomposites, Smart Mater. Struct., 26, 125009, 10.1088/1361-665X/aa9410
Poppinga, 2020, Plant Movements as Concept Generators for the Development of Biomimetic Compliant Mechanisms, Integr. Comp. Biol., 60, 886, 10.1093/icb/icaa028
Alief, 2019, Modelling the shape memory properties of 4D printed polylactic acid (PLA) for application of disk spacer in minimally invasive spinal fusion, AIP Conf. Proc., 2092, 020005, 10.1063/1.5096673
Martins, S.S., Evangelista, A.C.J., Hammad, A.W.A., Tam, V.W.Y., and Haddad, A. (2020). Evaluation of 4D BIM tools applicability in construction planning efficiency. Int. J. Constr. Manag., 1–14.
Zolfagharian, 2020, 3D/4D-printed bending-type soft pneumatic actuators: Fabrication, modelling, and control, Virtual Phys. Prototyp., 15, 373, 10.1080/17452759.2020.1795209
Miao, 2020, 4D Self-Morphing Culture Substrate for Modulating Cell Differentiation, Adv. Sci., 7, 1902403, 10.1002/advs.201902403
Becker, 2020, 4D Printing of Resorbable Complex Shape-Memory Poly(propylene fumarate) Star Scaffolds, ACS Appl. Mater. Interfaces, 12, 22444, 10.1021/acsami.0c01444
Sharma, 2020, Additive manufacturing in drug delivery applications: A review, Int. J. Pharm., 589, 119820, 10.1016/j.ijpharm.2020.119820
Wang, L., Leng, J., and Du, S. (2020). 4D printing of shape memory polymers and their composites: Research status and application progress. Harbin Gongye Daxue Xuebao J. Harbin Inst. Technol.
2010, Potential use of natural fiber composite materials in India, J. Reinf. Plast. Compos., 29, 3600, 10.1177/0731684410381151
Furtado, 2014, Natural fibre-reinforced composite parts for automotive applications, Int. J. Automot. Compos., 1, 18, 10.1504/IJAUTOC.2014.064112
Barkoula, 2008, Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene, Polym. Polym. Compos., 16, 101