Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications

Polymers - Tập 13 Số 8 - Trang 1326
R.A. Ilyas1,2, S.M. Sapuan3,4, M.M. Harussani3, Mohd Hakimi3, Mohd Haziq3, M.S.N. Atikah5, M. R. M. Asyraf6, М. Р. Ишак6, Muhammad Rizal Razman7, Mohd Nurazzi Norizan8, Mohd Nor Faiz Norrrahim9, Hairul Abral10, Mochamad Asrofi11
1Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, UTM Johor Bahru 81310, Johor, Malaysia
2School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
3Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
4Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
5Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
6Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
7Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
8Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, UPNM Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
9Research Center for Chemical Defence, Universiti Pertahanan Nasional Malaysia, UPNM Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
10Department of Mechanical Engineering, Andalas University, Padang 25163, Sumatera Barat, Indonesia
11Department of Mechanical Engineering, University of Jember, Kampus Tegalboto, Jember 68121, East Java, Indonesia

Tóm tắt

Over recent years, enthusiasm towards the manufacturing of biopolymers has attracted considerable attention due to the rising concern about depleting resources and worsening pollution. Among the biopolymers available in the world, polylactic acid (PLA) is one of the highest biopolymers produced globally and thus, making it suitable for product commercialisation. Therefore, the effectiveness of natural fibre reinforced PLA composite as an alternative material to substitute the non-renewable petroleum-based materials has been examined by researchers. The type of fibre used in fibre/matrix adhesion is very important because it influences the biocomposites’ mechanical properties. Besides that, an outline of the present circumstance of natural fibre-reinforced PLA 3D printing, as well as its functions in 4D printing for applications of stimuli-responsive polymers were also discussed. This research paper aims to present the development and conducted studies on PLA-based natural fibre bio-composites over the last decade. This work reviews recent PLA-derived bio-composite research related to PLA synthesis and biodegradation, its properties, processes, challenges and prospects.

Từ khóa


Tài liệu tham khảo

Plackett, 2003, Biodegradable composites based on L-polylactide and jute fibres, Compos. Sci. Technol., 63, 1287, 10.1016/S0266-3538(03)00100-3

Sapuan, S.M., and Ilyas, R.A. (2020). Review on Green Technology Pyrolysis for Plastic Wastes. Proceedings of the 7th Postgraduate Seminar on Natural Fibre Reinforced Polymer Composites 2020, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia.

Syafiq, R., Sapuan, S.M., Zuhri, M.Y.M., Ilyas, R.A., Nazrin, A., Sherwani, S.F.K., and Khalina, A. (2020). Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers, 12.

Atikah, 2019, Degradation and physical properties of sugar palm starch/sugar palm nanofibrillated cellulose bionanocomposite, Polimery, 64, 27, 10.14314/polimery.2019.10.5

Drumright, 2000, Polylactic acid technology, Adv. Mater., 12, 1841, 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E

Nurazzi, 2021, Composites based on conductive polymer with carbon nanotubes in DMMP gas sensors—An overview, Polimery, 66, 85, 10.14314/polimery.2021.2.1

Ali, 2020, The nexus of population, GDP growth, electricity generation, electricity consumption and carbon emissions output in Malaysia, Int. J. Energy Econ. Policy, 10, 84, 10.32479/ijeep.8987

Nazrin, 2020, Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications, Front. Chem., 8, 1, 10.3389/fchem.2020.00213

Oksman, 2003, Natural fibres as reinforcement in polylactic acid (PLA) composites, Compos. Sci. Technol., 63, 1317, 10.1016/S0266-3538(03)00103-9

Graupner, 2008, Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites, J. Mater. Sci., 43, 5222, 10.1007/s10853-008-2762-3

Ilyas, R.A., Sapuan, S.M., Atikah, M.S.N., Asyraf, M.R.M., Rafiqah, S.A., Aisyah, H.A., Nurazzi, N.M., and Norrrahim, M.N.F. (2020). Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Text. Res. J., 004051752093239.

Sabaruddin, F.A., Paridah, M.T., Sapuan, S.M., Ilyas, R.A., Lee, S.H., Abdan, K., Mazlan, N., Roseley, A.S.M., and Abdul Khalil, H.P.S. (2020). The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers, 13.

Ayu, R.S., Khalina, A., Harmaen, A.S., Zaman, K., Isma, T., Liu, Q., Ilyas, R.A., and Lee, C.H. (2020). Characterization Study of Empty Fruit Bunch (EFB) Fibers Reinforcement in Poly(Butylene) Succinate (PBS)/Starch/Glycerol Composite Sheet. Polymers, 12.

Wambua, 2003, Natural fibres: Can they replace glass in fibre reinforced plastics?, Compos. Sci. Technol., 63, 1259, 10.1016/S0266-3538(03)00096-4

Asyraf, M.R.M., Ishak, M.R., Sapuan, S.M., and Yidris, N. (2021). Comparison of Static and Long-term Creep Behaviors between Balau Wood and Glass Fiber Reinforced Polymer Composite for Cross-arm Application. Fibers Polym., 22.

Asyraf, M.R.M., Ishak, M.R., Sapuan, S.M., and Yidris, N. (2021). Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties. Appl. Sci., 11.

Asyraf, M.R.M., Ishak, M.R., Sapuan, S.M., Yidris, N., and Ilyas, R.A. (2020). Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol.

Suriani, M.J., Radzi, F.S.M., Ilyas, R.A., Petrů, M., Sapuan, S.M., and Ruzaidi, C.M. (2021). Flammability, Tensile, and Morphological Properties of Oil Palm Empty Fruit Bunches Fiber/Pet Yarn-Reinforced Epoxy Fire Retardant Hybrid Polymer Composites. Polymers, 13.

Asyraf, M.R.M., Rafidah, M., Azrina, A., and Razman, M.R. (2021). Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: A comprehensive review on chemical treatments. Cellulose.

Jumaidin, 2019, Water Transport and Physical Properties of Sugarcane Bagasse Fibre Reinforced Thermoplastic Potato Starch Biocomposite, J. Adv. Res. Fluid Mech. Therm. Sci., 61, 273

Ilyas, 2020, The Preparation Methods and Processing of Natural Fibre Bio-polymer Composites, Curr. Org. Synth., 16, 1068, 10.2174/157017941608200120105616

Nurazzi, N.M., Asyraf, M.R.M., Khalina, A., Abdullah, N., Aisyah, H.A., Rafiqah, S.A., Sabaruddin, F.A., Kamarudin, S.H., Norrrahim, M.N.F., and Ilyas, R.A. (2021). A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers, 13.

Asyraf, M.R.M., Rafidah, M., Ishak, M.R., Sapuan, S.M., Ilyas, R.A., and Razman, M.R. (2020). Integration of TRIZ, Morphological Chart and ANP method for development of FRP composite portable fire extinguisher. Polym. Compos., 1–6.

Nurazzi, 2020, Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites, J. Mater. Res. Technol., 9, 1606, 10.1016/j.jmrt.2019.11.086

Aisyah, 2019, Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels, Int. J. Polym. Sci., 2019, 5258621, 10.1155/2019/5258621

Norizan, 2020, Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites, Polimery, 65, 34

Sapuan, S.M., Aulia, H.S., Ilyas, R.A., Atiqah, A., Dele-Afolabi, T.T., Nurazzi, M.N., Supian, A.B.M., and Atikah, M.S.N. (2020). Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. Polymers, 12.

Asyraf, M.R.M., Ishak, M.R., Sapuan, S.M., Yidris, N., Ilyas, R.A., Rafidah, M., and Razman, M.R. (2020). Evaluation of Design and Simulation of Creep Test Rig for Full-Scale Crossarm Structure. Adv. Civ. Eng., 2020.

Asyraf, 2020, Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach, J. Mater. Res. Technol., 9, 2357, 10.1016/j.jmrt.2019.12.067

Syafri, 2019, Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites, J. Mater. Res. Technol., 8, 6223, 10.1016/j.jmrt.2019.10.016

Abral, 2020, Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film, J. Mater. Res. Technol., 9, 2477, 10.1016/j.jmrt.2019.12.078

Jumaidin, 2019, Characteristics of Cogon Grass Fibre Reinforced Thermoplastic Cassava Starch Biocomposite: Water Absorption and Physical Properties, J. Adv. Res. Fluid Mech. Therm. Sci., 62, 43

Rozilah, A., Jaafar, C.N.A., Sapuan, S.M., Zainol, I., and Ilyas, R.A. (2020). The Effects of Silver Nanoparticles Compositions on the Mechanical, Physiochemical, Antibacterial, and Morphology Properties of Sugar Palm Starch Biocomposites for Antibacterial Coating. Polymers, 12.

Ariffin, H., Sapuan, S.M., and Hassan, M.A. (2019). Design and Fabrication of a Shoe Shelf From Kenaf Fiber Reinforced Unsaturated Polyester Composites. Lignocellulose for Future Bioeconomy, Elsevier.

Asyraf, 2020, Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review, Int. J. Polym. Sci., 2020, 8878300, 10.1155/2020/8878300

Asyraf, 2019, Conceptual design of creep testing rig for full-scale cross arm using TRIZ-Morphological chart-analytic network process technique, J. Mater. Res. Technol., 8, 5647, 10.1016/j.jmrt.2019.09.033

Hashmi, S., Batalha, G.F., and Van Tyne, C.J. (2014). Application and Advances in Microprocessing of Natural Fiber (Jute)–Based Composites. Comprehensive Materials Processing, Elsevier.

Chemiefaser, I. (2019, December 02). Worldwide Production Volume of Chemical and Textile Fibers from 1975 to 2018. Available online: https://www.statista.com/statistics/263154/worldwide-production-volume-of-textile-fibers-since-1975/.

Migneault, 2008, Effect of fiber length on processing and properties of extruded wood-fiber/HDPE composites, J. Appl. Polym. Sci., 110, 1085, 10.1002/app.28720

Mukherjee, 2011, PLA Based Biopolymer Reinforced with Natural Fibre: A Review, J. Polym. Environ., 19, 714, 10.1007/s10924-011-0320-6

Cosgrove, 2005, Growth of the plant cell wall, Nat. Rev. Mol. Cell Biol., 6, 850, 10.1038/nrm1746

Martins, 2004, Scanning electron microscopy study of raw and chemically modified sisal fibers, J. Appl. Polym. Sci., 94, 2333, 10.1002/app.21203

Ilyas, 2018, Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: A Review, Curr. Anal. Chem., 14, 203, 10.2174/1573411013666171003155624

Ferreira, 2018, Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: From a micro- to a nano-scale view, Appl. Surf. Sci., 436, 1113, 10.1016/j.apsusc.2017.12.137

Abral, 2020, Transparent and antimicrobial cellulose film from ginger nanofiber, Food Hydrocoll., 98, 105266, 10.1016/j.foodhyd.2019.105266

Ilyas, 2018, Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata), Carbohydr. Polym., 181, 1038, 10.1016/j.carbpol.2017.11.045

Ilyas, 2019, Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior, Int. J. Biol. Macromol., 123, 379, 10.1016/j.ijbiomac.2018.11.124

Ilyas, 2017, Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre, BioResources, 12, 8734, 10.15376/biores.12.4.8734-8754

Ibrahim, 2019, Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensiveapproach from macro to nano scale, J. Mater. Res. Technol., 8, 2753, 10.1016/j.jmrt.2019.04.011

Alemdar, 2008, Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls, Bioresour. Technol., 99, 1664, 10.1016/j.biortech.2007.04.029

George, 2016, Isolation and characterization of cellulose nanofibrils from arecanut husk fibre, Carbohydr. Polym., 142, 158, 10.1016/j.carbpol.2016.01.015

Chirayil, 2014, Isolation and characterization of cellulose nanofibrils from Helicteres isora plant, Ind. Crops Prod., 59, 27, 10.1016/j.indcrop.2014.04.020

Cherian, 2010, Isolation of nanocellulose from pineapple leaf fibres by steam explosion, Carbohydr. Polym., 81, 720, 10.1016/j.carbpol.2010.03.046

Syafri, E., Kasim, A., Abral, H., and Asben, A. (2018). Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment. J. Nat. Fibers, 1145–1155.

Megashah, L.N., Ariffin, H., Zakaria, M.R., and Hassan, M.A. (2018). Properties of Cellulose Extract from Different Types of Oil Palm Biomass. IOP Conf. Ser. Mater. Sci. Eng., 368.

Jonoobi, 2011, Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process, Cellulose, 18, 1085, 10.1007/s10570-011-9546-7

Pessan, 2010, Cellulose nanofibers from curaua fibers, Cellulose, 17, 1183, 10.1007/s10570-010-9453-3

Tibolla, 2014, Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment, LWT Food Sci. Technol., 59, 1311, 10.1016/j.lwt.2014.04.011

Bondancia, 2011, Sugarcane bagasse whiskers: Extraction and characterizations, Ind. Crops Prod., 33, 63, 10.1016/j.indcrop.2010.08.009

Jonoobi, 2009, Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers, BioResources, 4, 626, 10.15376/biores.4.2.626-639

Bendahou, 2009, Physico-chemical characterization of palm from Phoenix Dactylifera-L, preparation of cellulose whiskers and natural rubber-based nanocomposites, J. Biobased Mater. Bioenergy, 3, 81, 10.1166/jbmb.2009.1011

Chan, 2013, Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood, BioResources, 8, 785

Abral, 2018, Characterization of Tapioca Starch Biopolymer Composites Reinforced with Micro Scale Water Hyacinth Fibers, Starch Staerke, 70, 1, 10.1002/star.201700287

Alemdar, 2008, Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties, Compos. Sci. Technol., 68, 557, 10.1016/j.compscitech.2007.05.044

Li, 2014, Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp, Carbohydr. Polym., 102, 136, 10.1016/j.carbpol.2013.11.021

Sheltami, 2012, Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius), Carbohydr. Polym., 88, 772, 10.1016/j.carbpol.2012.01.062

Mohanty, 2001, Surface modifications of natural fibres and peformance of the resulting biocomposite, Compos. Interfaces, 8, 313, 10.1163/156855401753255422

Sawpan, M.A., Pickering, K.L., and Fernyhough, A. (2011). Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos. Part A Appl. Sci. Manuf.

Li, 2007, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review, J. Polym. Environ., 15, 25, 10.1007/s10924-006-0042-3

Sapuan, S.M., and Ilyas, R.A. (2020). Effect of sorbitol and glycerol plasticizer and concentration on physical properties of corn starch (Zea mays) biodegradable films. Proceedings of the 7th Postgraduate Seminar on Natural Fibre Reinforced Polymer Composites 2020, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia.

Kandemir, 2005, Production of antimicrobial films by incorporation of partially purified lysozyme into biodegradable films of crude exopolysaccharides obtained from Aureobasidium pullulans fermentation, Food Technol. Biotechnol., 43, 343

Auras, R., Lim, L., Selke, S.E.M., and Tsuji, H. (2010). Industrial Production of High Molecular Weight Poly(Lactic Acid). Poly(Lactic Acid), John Wiley & Sons, Inc.

Lim, 2008, Processing technologies for poly(lactic acid), Prog. Polym. Sci., 33, 820, 10.1016/j.progpolymsci.2008.05.004

Rasal, 2010, Poly(lactic acid) modifications, Prog. Polym. Sci., 35, 338, 10.1016/j.progpolymsci.2009.12.003

Arrieta, M.P., Samper, M.D., Aldas, M., and López, J. (2017). On the use of PLA-PHB blends for sustainable food packaging applications. Materials, 10.

Devaux, 2011, PLA/carbon nanotubes multifilament yarns for relative humidity textile sensor, J. Eng. Fiber. Fabr., 6, 155892501100600300

Tanase, 2014, PLA/chitosan/keratin composites for biomedical applications, Mater. Sci. Eng. C, 40, 242, 10.1016/j.msec.2014.03.054

Pozo Morales, A., Güemes, A., Fernandez-Lopez, A., Carcelen Valero, V., and De La Rosa Llano, S. (2017). Bamboo–polylactic acid (PLA) composite material for structural applications. Materials, 10.

Pickering, 2016, Preparation and mechanical properties of novel bio-composite made of dynamically sheet formed discontinuous harakeke and hemp fibre mat reinforced PLA composites for structural applications, Ind. Crops Prod., 84, 139, 10.1016/j.indcrop.2016.02.005

Kumar, 2017, Fibrous biocomposites from nettle (Girardinia diversifolia) and poly (lactic acid) fibers for automotive dashboard panel application, Compos. Part B Eng., 130, 54, 10.1016/j.compositesb.2017.07.059

Mohanty, 2000, Biofibres, biodegradable polymers and biocomposites: An overview, Macromol. Mater. Eng., 24, 1, 10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W

Nurazzi, 2019, Mechanical properties of sugar palm yarn/woven glass fiber reinforced unsaturated polyester composites: Effect of fiber loadings and alkaline treatment, Polimery, 64, 12, 10.14314/polimery.2019.10.3

Abral, H., Ariksa, J., Mahardika, M., Handayani, D., Aminah, I., Sandrawati, N., Sapuan, S.M., and Ilyas, R.A. (2019). Highly transparent and antimicrobial PVA based bionanocomposites reinforced by ginger nanofiber. Polym. Test., 106186.

Jumaidin, 2020, Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite, Int. J. Biol. Macromol., 146, 746, 10.1016/j.ijbiomac.2019.11.011

McLoughlin, J., and Sabir, T. (2017). Composite textiles used in high-performance apparel. High-Performance Apparel: Materials, Development, and Applications, Woodhead Publishing.

Mohd Nurazzi, N., Muhammad Asyraf, M.R., Khalina, A., Abdullah, N., Sabaruddin, F.A., Kamarudin, S.H., Ahmad, S., Mahat, A.M., Lee, C.L., and Aisyah, H.A. (2021). Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers, 13.

Sari, 2020, The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite, Polym. Test., 91, 106751, 10.1016/j.polymertesting.2020.106751

Amir, S.M.M., Sultan, M.T.H., Jawaid, M., Ariffin, A.H., Mohd, S., Salleh, K.A.M., Ishak, M.R., and Md Shah, A.U. (2018). Nondestructive testing method for Kevlar and natural fiber and their hybrid composites. Durab. Life Predict. Biocompos. Fibre Reinf. Compos. Hybrid Compos., 367–388.

Talreja, R., and Varna, J. (2016). Composite materials: Constituents, architecture, and generic damage. Modeling Damage, Fatigue and Failure of Composite Materials, Elsevier Ltd.

Ku, 2011, A review on the tensile properties of natural fiber reinforced polymer composites, Compos. Part B Eng., 42, 856, 10.1016/j.compositesb.2011.01.010

Jem, 2020, The development and challenges of poly (lactic acid) and poly (glycolic acid), Adv. Ind. Eng. Polym. Res., 3, 60

Jiménez-Gómez, C.P., and Cecilia, J.A. (2020). Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules, 25.

Saratale, 2021, A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams, Bioresour. Technol., 325, 124685, 10.1016/j.biortech.2021.124685

Siakeng, 2019, Natural fiber reinforced polylactic acid composites: A review, Polym. Compos., 40, 446, 10.1002/pc.24747

Hinchcliffe, 2016, Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials, Compos. Part B Eng., 95, 346, 10.1016/j.compositesb.2016.03.089

Holbery, 2006, Natural-fiber-reinforced polymer composites in automotive applications, Jom, 58, 80, 10.1007/s11837-006-0234-2

Dunne, 2016, A review of natural fibres, their sustainability and automotive applications, J. Reinf. Plast. Compos., 35, 1041, 10.1177/0731684416633898

Faruk, 2012, Biocomposites reinforced with natural fibers: 2000–2010, Prog. Polym. Sci., 37, 1552, 10.1016/j.progpolymsci.2012.04.003

2004, Mechanical properties of continuous natural fibre-reinforced polymer composites, Compos. Part A Appl. Sci. Manuf., 35, 339, 10.1016/j.compositesa.2003.09.012

Alkbir, 2016, Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review, Compos. Struct., 148, 59, 10.1016/j.compstruct.2016.01.098

Asaithambi, 2014, Bio-composites: Development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites, Fibers Polym., 15, 847, 10.1007/s12221-014-0847-y

Bajpai, 2013, Tribological behavior of natural fiber reinforced PLA composites, Wear, 297, 829, 10.1016/j.wear.2012.10.019

Graupner, 2009, Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas, Compos. Part A Appl. Sci. Manuf., 40, 810, 10.1016/j.compositesa.2009.04.003

Jiang, N., Yu, T., Li, Y., Pirzada, T.J., and Marrow, T.J. (2019). Hygrothermal aging and structural damage of a jute/poly (lactic acid) (PLA) composite observed by X-ray tomography. Compos. Sci. Technol.

Yu, 2009, Preparation and properties of short natural fiber reinforced poly(lactic acid) composites, Trans. Nonferrous Met. Soc. China Engl. Ed., 19, s651, 10.1016/S1003-6326(10)60126-4

Wallenberger, F.T., and Weston, N.E. (2004). Plastics and Composites from Polylactic Acid. Natural Fibers, Plastics and Composites, Springer.

Omar, 2020, Kenaf Fiber Reinforced Composite in the Automotive Industry, Encycl. Renew. Sustain. Mater., 5, 95

Sapuan, S.M., and Ilyas, R.A. (2020). Natural fibre: A promising source for the production of nanocellulose. Proceedings of the 7th Postgraduate Seminar on Natural Fibre Reinforced Polymer Composites 2020, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia.

Zhang, 2018, Polydopamine induced natural fiber surface functionalization: A way towards flame retardancy of flax/poly(lactic acid) biocomposites, Compos. Part B Eng., 154, 56, 10.1016/j.compositesb.2018.07.037

Pornwannachai, 2018, Fire-resistant natural fibre-reinforced composites from flame retarded textiles, Polym. Degrad. Stab., 154, 115, 10.1016/j.polymdegradstab.2018.05.019

Jang, 2012, Thermal stability and flammability of coconut fiber reinforced poly(lactic acid) composites, Compos. Part B Eng., 43, 2434, 10.1016/j.compositesb.2011.11.003

Sukmawan, 2016, Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber, Compos. Part B Eng., 84, 9, 10.1016/j.compositesb.2015.08.072

Bhat, 2012, Bamboo fibre reinforced biocomposites: A review, Mater. Des., 42, 353, 10.1016/j.matdes.2012.06.015

Gunti, 2018, Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass, Polym. Compos., 39, 1125, 10.1002/pc.24041

Elmessiry, 2016, Analysis of the wheat straw/flax fiber reinforced polymer hybrid composites, J. App. Mech. Eng, 5, 1

Nyambo, 2011, Effect of maleated compatibilizer on performance of PLA/wheat Straw-Based green composites, Macromol. Mater. Eng., 296, 710, 10.1002/mame.201000403

Sam, 2016, Tensile properties of rice straw fiber reinforced poly (lactic acid) biocomposites, Advanced Materials Research, Volume 1133, 598, 10.4028/www.scientific.net/AMR.1133.598

Ismail, 2011, Mechanical properties of rice straw fiber-reinforced polymer composites, Fibers Polym., 12, 648, 10.1007/s12221-011-0648-5

Ding, 2018, Mechanical properties and degradation characteristics of corn straw fibers/polylactic acid composite materials, J. Agric. Resour. Environ., 35, 455

Pradhan, 2010, Compostability and biodegradation study of PLA–wheat straw and PLA–soy straw based green composites in simulated composting bioreactor, Bioresour. Technol., 101, 8489, 10.1016/j.biortech.2010.06.053

Wang, H., Hassan, E., Memon, H., Elagib, T., and Abad AllaIdris, F. (2019). Characterization of natural composites fabricated from Abutilon-fiber-reinforced Poly (Lactic Acid). Processes, 7.

Ozyhar, 2020, Effect of functional mineral additive on processability and material properties of wood-fiber reinforced poly(lactic acid) (PLA) composites, Compos. Part A Appl. Sci. Manuf., 132, 105827, 10.1016/j.compositesa.2020.105827

Zhang, 2012, Study on poly(lactic acid)/natural fibers composites, J. Appl. Polym. Sci., 125, E526, 10.1002/app.36852

Du, 2014, Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites, Compos. Part B Eng., 56, 717, 10.1016/j.compositesb.2013.09.012

Dhand, 2015, A short review on basalt fiber reinforced polymer composites, Compos. Part B Eng., 73, 166, 10.1016/j.compositesb.2014.12.011

Sang, 2019, Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications, Compos. Part B Eng., 164, 629, 10.1016/j.compositesb.2019.01.085

Kurniawan, 2012, Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites, Compos. Part B Eng., 43, 1010, 10.1016/j.compositesb.2011.11.007

Khan, 2016, Studies on the mechanical properties of woven jute fabric reinforced poly(L-lactic acid) composites, J. King Saud Univ. Eng. Sci., 28, 69

Bergeret, 2011, Natural fibre-reinforced biofoams, Int. J. Polym. Sci., 2011, 569871, 10.1155/2011/569871

Jauhari, 2015, Natural Fibre Reinforced Composite Laminates—A Review, Mater. Today Proc., 2, 2868, 10.1016/j.matpr.2015.07.304

Nechwatal, 2003, Developments in the characterization of natural fibre properties and in the use of natural fibres for composites, Compos. Sci. Technol., 63, 1273, 10.1016/S0266-3538(03)00098-8

Kiekens, 2001, Thermoplastic pultrusion of natural fibre reinforced composites, Compos. Struct., 54, 355, 10.1016/S0263-8223(01)00110-6

Sujaritjun, 2013, Mechanical property of surface modified natural fiber reinforced PLA biocomposites, Energy Procedia, 34, 664, 10.1016/j.egypro.2013.06.798

Hu, 2007, Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites, J. Compos. Mater., 41, 1655, 10.1177/0021998306069878

Choi, 2012, Effects of surface treatment of ramie fibers in a ramie/poly(lactic acid) composite, Fibers Polym., 13, 217, 10.1007/s12221-012-0217-6

Baghaei, B., Skrifvars, M., Rissanen, M., and Ramamoorthy, S.K. (2014). Mechanical and thermal characterization of compression moulded polylactic acid natural fiber composites reinforced with hemp and lyocell fibers. J. Appl. Polym. Sci., 131.

Singh, 2011, Microwave Joining of Natural Fiber Reinforced Green Composites, Adv. Mater. Res., 410, 102, 10.4028/www.scientific.net/AMR.410.102

Neoh, 2011, Micro Palm and Kenaf Fibers Reinforced PLA Composite: Effect of Volume Fraction on Tensile Strength, Appl. Mech. Mater., 145, 1, 10.4028/www.scientific.net/AMM.145.1

Porras, 2016, Thermo-mechanical characterization of Manicaria Saccifera natural fabric reinforced poly-lactic acid composite lamina, Compos. Part A Appl. Sci. Manuf., 81, 105, 10.1016/j.compositesa.2015.11.008

Bax, 2008, Impact and tensile properties of PLA/Cordenka and PLA/flax composites, Compos. Sci. Technol., 68, 1601, 10.1016/j.compscitech.2008.01.004

Bledzki, 2010, Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres—A comparative study to PP, Compos. Sci. Technol., 70, 1687, 10.1016/j.compscitech.2010.06.005

Cheung, 2009, Natural fibre-reinforced composites for bioengineering and environmental engineering applications, Compos. Part B Eng., 40, 655, 10.1016/j.compositesb.2009.04.014

Guillou, 2019, 3D printing of continuous flax fibre reinforced biocomposites for structural applications, Mater. Des., 180, 107884, 10.1016/j.matdes.2019.107884

Bodros, 2007, Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?, Compos. Sci. Technol., 67, 462, 10.1016/j.compscitech.2006.08.024

Beck, 2010, Agrofibre reinforced poly(lactic acid) composites: Effect of moisture on degradation and mechanical properties, Compos. Part A Appl. Sci. Manuf., 41, 1628, 10.1016/j.compositesa.2010.07.011

Saba, 2015, Mechanical properties of kenaf fibre reinforced polymer composite: A review, Constr. Build. Mater., 76, 87, 10.1016/j.conbuildmat.2014.11.043

Sawpan, 2011, Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites, Compos. Part A Appl. Sci. Manuf., 42, 1189, 10.1016/j.compositesa.2011.05.003

Hughes, 2012, Defects in natural fibres: Their origin, characteristics and implications for natural fibre-reinforced composites, J. Mater. Sci., 47, 599, 10.1007/s10853-011-6025-3

Bledzki, 2001, Natural-fibre-reinforced polyurethane microfoams, Compos. Sci. Technol., 61, 2405, 10.1016/S0266-3538(01)00129-4

Teramoto, 2004, Biodegradation of aliphatic polyester composites reinforced by abaca fiber, Polym. Degrad. Stab., 86, 401, 10.1016/j.polymdegradstab.2004.04.026

Verma, 2013, Coir fibre reinforcement and application in polymer composites: A review, J. Mater. Environ. Sci., 4, 263

Takagi, 2007, Thermal conductivity of PLA-bamboo fiber composites, Adv. Compos. Mater. Off. J. Japan Soc. Compos. Mater., 16, 377

Nuthong, 2013, Impact property of flexible epoxy treated natural fiber reinforced PLA composites, Energy Procedia, 34, 839, 10.1016/j.egypro.2013.06.820

Al-Oqla, F.M., and Sapuan, S.M. (2020). Natural Polylactic Acid-Based Fiber Composites: A Review. Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers, Elsevier.

Chia, 2014, High-resolution direct 3D printed PLGA scaffolds: Print and shrink, Biofabrication, 7, 015002, 10.1088/1758-5090/7/1/015002

Mazzanti, V., Malagutti, L., and Mollica, F. (2019). FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties. Polymers, 11.

Jamshidian, 2010, Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies, Compr. Rev. Food Sci. Food Saf., 9, 552, 10.1111/j.1541-4337.2010.00126.x

Ilyas, 2020, Biopolymers and biocomposites: Chemistry and technology, Curr. Anal. Chem., 16, 500, 10.2174/157341101605200603095311

Castro, 2016, 3D printing of wood fibre biocomposites: From mechanical to actuation functionality, Mater. Des., 96, 106, 10.1016/j.matdes.2016.02.018

Ayrilmis, 2019, Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials, Int. J. Adv. Manuf. Technol., 102, 2195, 10.1007/s00170-019-03299-9

Matsuzaki, 2016, Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation, Sci. Rep., 6, 23058, 10.1038/srep23058

Zhao, 2019, Poplar as Biofiber Reinforcement in Composites for Large-Scale 3D Printing, ACS Appl. Bio Mater., 2, 4557, 10.1021/acsabm.9b00675

Champeau, 2020, 4D Printing of Hydrogels: A Review, Adv. Funct. Mater., 30, 1910606, 10.1002/adfm.201910606

Spiegel, 2020, 4D Printing at the Microscale, Adv. Funct. Mater., 30, 1907615, 10.1002/adfm.201907615

Zolfagharian, 2020, Closed-loop 4D-printed soft robots, Mater. Des., 188, 108411, 10.1016/j.matdes.2019.108411

Quanjin, 2020, Recent 3D and 4D intelligent printing technologies: A comparative review and future perspective, Procedia Comput. Sci., 167, 1210, 10.1016/j.procs.2020.03.434

Ma, 2020, Recent progress in 4D printing of stimuli-responsive polymeric materials, Sci. China Technol. Sci., 63, 532, 10.1007/s11431-019-1443-1

Subash, 2020, 4D printing of shape memory polymers, Eur. Polym. J., 134, 109771, 10.1016/j.eurpolymj.2020.109771

Zafar, 2020, 4D Printing: Future Insight in Additive Manufacturing, Met. Mater. Int., 26, 564, 10.1007/s12540-019-00441-w

Chu, H., Yang, W., Sun, L., Cai, S., Yang, R., Liang, W., Yu, H., and Liu, L. (2020). 4D Printing: A Review on Recent Progresses. Micromachines, 11.

Zolfagharian, A., Kaynak, A., Bodaghi, M., Kouzani, A.Z., Gharaie, S., and Nahavandi, S. (2020). Control-Based 4D Printing: Adaptive 4D-Printed Systems. Appl. Sci., 10.

Yang, 2020, Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics, Adv. Funct. Mater., 30, 1901693, 10.1002/adfm.201901693

Nautiyal, U., Sahu, N., and Gupta, D. (2020). Hydrogel: Preparation, Characterization and Applications. Asian Pacific J. Nurs. Health Sci., 3.

Zheng, 2020, Near-infrared-light regulated angiogenesis in a 4D hydrogel, Nanoscale, 12, 13654, 10.1039/D0NR02552F

Requile, 2017, Natural fibres actuators for smart bio-inspired hygromorph biocomposites, Smart Mater. Struct., 26, 125009, 10.1088/1361-665X/aa9410

Poppinga, 2020, Plant Movements as Concept Generators for the Development of Biomimetic Compliant Mechanisms, Integr. Comp. Biol., 60, 886, 10.1093/icb/icaa028

Alief, 2019, Modelling the shape memory properties of 4D printed polylactic acid (PLA) for application of disk spacer in minimally invasive spinal fusion, AIP Conf. Proc., 2092, 020005, 10.1063/1.5096673

Martins, S.S., Evangelista, A.C.J., Hammad, A.W.A., Tam, V.W.Y., and Haddad, A. (2020). Evaluation of 4D BIM tools applicability in construction planning efficiency. Int. J. Constr. Manag., 1–14.

Zolfagharian, 2020, 3D/4D-printed bending-type soft pneumatic actuators: Fabrication, modelling, and control, Virtual Phys. Prototyp., 15, 373, 10.1080/17452759.2020.1795209

Miao, 2020, 4D Self-Morphing Culture Substrate for Modulating Cell Differentiation, Adv. Sci., 7, 1902403, 10.1002/advs.201902403

Becker, 2020, 4D Printing of Resorbable Complex Shape-Memory Poly(propylene fumarate) Star Scaffolds, ACS Appl. Mater. Interfaces, 12, 22444, 10.1021/acsami.0c01444

Sharma, 2020, Additive manufacturing in drug delivery applications: A review, Int. J. Pharm., 589, 119820, 10.1016/j.ijpharm.2020.119820

Wang, L., Leng, J., and Du, S. (2020). 4D printing of shape memory polymers and their composites: Research status and application progress. Harbin Gongye Daxue Xuebao J. Harbin Inst. Technol.

2010, Potential use of natural fiber composite materials in India, J. Reinf. Plast. Compos., 29, 3600, 10.1177/0731684410381151

Furtado, 2014, Natural fibre-reinforced composite parts for automotive applications, Int. J. Automot. Compos., 1, 18, 10.1504/IJAUTOC.2014.064112

Barkoula, 2008, Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene, Polym. Polym. Compos., 16, 101