Polyimide-polyether binders–diminishing the carbon content in lithium sulfur batteries

Materials Today Energy - Tập 6 - Trang 264-270 - 2017
Guiomar Hernández1, Nerea Lago1, Devaraj Shanmukaraj2, Michel Armand2, David Mecerreyes3,1
1POLYMAT, University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
2CIC EnergiGUNE, Alava Technology Park, Albert Einstein 48, 01510, Miñano, Alava, Spain
3Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Manthiram, 2015, Lithium–Sulfur batteries: progress and prospects, Adv. Mater, 27, 1980, 10.1002/adma.201405115

Urbonaite, 2015, Progress towards commercially viable Li–S battery cells, Adv. Energy Mater, 5, 1500118, 10.1002/aenm.201500118

Manthiram, 2014, Rechargeable lithium–sulfur batteries, Chem. Rev., 114, 11751, 10.1021/cr500062v

Dirlam, 2017, The use of polymers in Li-S batteries: a review, J. Polym. Sci. Part A Polym. Chem., 55, 1635, 10.1002/pola.28551

Bruce, 2012, Li-O2 and Li-S batteries with high energy storage, Nat. Mater, 11, 19, 10.1038/nmat3191

Ji, 2011, Stabilizing lithium–sulphur cathodes using polysulphide reservoirs, Nat. Commun., 2, 325, 10.1038/ncomms1293

Wei, 2011, Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries, Energy Environ. Sci., 4, 736, 10.1039/c0ee00505c

Ji, 2009, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater, 8, 500, 10.1038/nmat2460

Fu, 2012, Sulfur–carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 4, 6046, 10.1021/am301688h

Su, 2012, A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer, Chem. Commun., 48, 8817, 10.1039/c2cc33945e

Ma, 2014, Enhanced cycle performance of Li–S battery with a polypyrrole functional interlayer, J. Power Sources, 267, 542, 10.1016/j.jpowsour.2014.05.057

Zhang, 2014, Nickel foam as interlayer to improve the performance of lithium–sulfur battery, J. Solid State Electrochem, 18, 1025, 10.1007/s10008-013-2351-5

Huang, 2014, Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries, Energy Environ. Sci., 7, 347, 10.1039/C3EE42223B

Chung, 2014, A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries, Adv. Mater, 26, 7352, 10.1002/adma.201402893

Zhang, 2014, Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries, Electrochim. Acta, 129, 55, 10.1016/j.electacta.2014.02.077

Jayaprakash, 2011, Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries, Angew. Chem. Int. Ed., 50, 5904, 10.1002/anie.201100637

Wang, 2011, Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability, Nano Lett., 11, 2644, 10.1021/nl200658a

Xiao, 2012, A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life, Adv. Mater, 24, 1176, 10.1002/adma.201103392

Ma, 2016, Enhanced performance of lithium sulfur batteries with conductive polymer modified separators, J. Mater. Chem. A, 4, 16968, 10.1039/C6TA07198H

Li, 2013, Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance, Nano Lett., 13, 5534, 10.1021/nl403130h

Pang, 2014, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries, Nat. Commun., 5, 4759, 10.1038/ncomms5759

Wei Seh, 2013, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries, Nat. Commun., 4, 1331, 10.1038/ncomms2327

Lacey, 2014, Functional, water-soluble binders for improved capacity and stability of lithium–sulfur batteries, J. Power Sources, 264, 8, 10.1016/j.jpowsour.2014.04.090

Lacey, 2013, Why PEO as a binder or polymer coating increases capacity in the Li-S system, Chem. Commun., 49, 8531, 10.1039/c3cc44772c

Seh, 2013, Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder, Chem. Sci., 4, 3673, 10.1039/c3sc51476e

Lacey, 2017, Water-based, functional binder framework for high-energy lithium–sulfur batteries, Chem. Sus. Chem., 10, 2758, 10.1002/cssc.201700743

Zhang, 2012, Binder based on polyelectrolyte for high capacity density lithium/sulfur battery, J. Electrochem. Soc., 159, A1226, 10.1149/2.039208jes

Wang, 2011, Improve rate capability of the sulfur cathode using a gelatin binder, J. Electrochem. Soc., 158, A775, 10.1149/1.3583375

Rao, 2012, Carbon nanofiber–sulfur composite cathode materials with different binders for secondary Li/S cells, Electrochim. Acta, 65, 228, 10.1016/j.electacta.2012.01.051

Frischmann, 2016, Redox-active supramolecular polymer binders for lithium–sulfur batteries that adapt their transport properties in operando, Chem. Mater, 28, 7414, 10.1021/acs.chemmater.6b03013

Gu, 2016, Improving the performance of lithium–sulfur batteries by employing polyimide particles as hosting matrixes, ACS Appl. Mater. Interfaces, 8, 7464, 10.1021/acsami.6b01118

Chen, 2013, Charging a Li–O2 battery using a redox mediator, Nat. Chem., 5, 489, 10.1038/nchem.1646

Frischmann, 2015, Supramolecular perylene bisimide-polysulfide gel networks as nanostructured redox mediators in dissolved polysulfide lithium–sulfur batteries, Chem. Mater, 27, 6765, 10.1021/acs.chemmater.5b02955

Li, 2015, The application of redox targeting principles to the design of rechargeable Li–S flow batteries, Adv. Energy Mater, 5, 1501808, 10.1002/aenm.201501808

Moshurchak, 2008, Triphenylamines as a class of redox shuttle molecules for the overcharge protection of lithium-ion cells, J. Electrochem. Soc., 155, A129, 10.1149/1.2816229

Meini, 2014, The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li–S battery systems,, J. Phys. Chem. Lett., 5, 915, 10.1021/jz500222f

Gerber, 2016, Three-Dimensional growth of Li2S in lithium–sulfur batteries promoted by a redox mediator, Nano Lett., 16, 549, 10.1021/acs.nanolett.5b04189

Chen, 2002, Reducing carbon in LiFePO4 /C composite electrodes to maximize specific energy, volumetric energy, and tap density, J. Electrochem. Soc., 149, A1184, 10.1149/1.1498255

Hernández, 2015, Redox-active polyimide-polyether block copolymers as electrode materials for lithium batteries, RSC Adv., 5, 17096, 10.1039/C4RA15976D

Michot, 1995, Polyimide polyether mixed conductors as switchable materials for electrochromic devices, Sol. Energy Mater. Sol. Cells, 39, 289, 10.1016/0927-0248(95)00066-6

Song, 2010, Polyimides: promising energy-storage materials, Angew. Chem. Int. Ed., 49, 8444, 10.1002/anie.201002439

Wang, 2014, Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries, Adv. Energy Mater, 4, 1301651, 10.1002/aenm.201301651

Bruce, 1993, Polymer electrolytes, J. Chem. Soc. Faraday Trans., 89, 3187, 10.1039/ft9938903187

Krause, 1989, Electronic conduction in polyimides, J. Electrochem. Soc., 136, 1379, 10.1149/1.2096925