Polyethyleneglycol diacrylate hydrogels with plasmonic gold nanospheres incorporated via functional group optimization

Micro and Nano Systems Letters - Tập 5 - Trang 1-8 - 2017
Dinesh Veeran Ponnuvelu1, Seokbeom Kim1, Jungchul Lee1
1Department of Mechanical Engineering, Sogang University, Seoul, South Korea

Tóm tắt

We present a facile method for the preparation of polyethyleneglycol diacrylate (PEG-DA) hydrogels with plasmonic gold (Au) nanospheres incorporated for various biological and chemical sensing applications. Plasmonic Au nanospheres were prepared ex situ using the standard citrate reduction method with an average diameter of 3.5 nm and a standard deviation of 0.5 nm, and evaluated for their surface functionalization process intended for uniform dispersion in polymer matrices. UV–Visible spectroscopy reveals the existence of plasmonic properties for pristine Au nanospheres, functionalized Au nanospheres, and PEG-DA with uniformly dispersed functionalized Au nanospheres (hybrid Au/PEG-DA hydrogels). Hybrid Au/PEG-DA hydrogels examined by using Fourier transform infra-red spectroscopy (FT-IR) exhibit the characteristic bands at 1635, 1732 and 2882 cm−1 corresponding to reaction products of OH− originating from oxidized product of citrate, –C=O stretching from ester bond, and C–H stretching of PEG-DA, respectively. Thermal studies of hybrid Au/PEG-DA hydrogels show three-stage decomposition with their stabilities up to 500 °C. Optical properties and thermal stabilities associated with the uniform dispersion of Au nanospheres within hydrogels reported herein will facilitate various biological and chemical sensing applications.

Tài liệu tham khảo

Yin PT, Shah S, Chhowalla M, Lee K-B (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bio-applications. Chem Rev 115:2483–2531 Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433 Cong H-P, Qiu J-H, Yu S-H (2015) Thermoresponsive Poly(N-isopropylacrylamide)/Graphene/Au nanocomposite hydrogel for water treatment by a laser-assisted approach. Small 11:1165–1170 Hood M, Mari M, Muñoz-Espí R (2014) Synthetic strategies in the preparation of polymer/inorganic hybrid nanoparticles. Materials 7:4057 Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719 Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121 Oyen ML (2014) Mechanical characterisation of hydrogel materials. Int Mater Rev 59:44–59 Koo W-T, Choi S-J, Kim S-J, Jang J-S, Tuller HL, Kim I-D (2016) Heterogeneous sensitization of metal–organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J Am Chem Soc 138:13431–13437 Potyrailo RA (2016) Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem Rev 116:11877–11923 Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506 Cong H-P, Qiu J-H, Yu S-H (2015) Thermoresponsive poly(n-isopropylacrylamide)/graphene/au nanocomposite hydrogel for water treatment by a laser-assisted approach. Small 11:1165–1170 Lee JS, Song J, Kim SO, Kim S, Lee W, Jackman JA, Kim D, Cho N-J, Lee J (2016) Multifunctional hydrogel nano-probes for atomic force microscopy. Nat Commun 7:11566 Fang H, Jiang F, Wu Q, Ding Y, Wang Z (2014) Supertough polylactide materials prepared through in situ reactive blending with peg-based diacrylate monomer. ACS Appl Mater Interfaces 6:13552–13563 Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393 Tan N, Lee C, Li P (2016) Green synthesis of smart metal/polymer nanocomposite particles and their tuneable catalytic activities. Polymers 8:105 Selvakannan PR, Mandal S, Phadtare S, Pasricha R, Sastry M (2003) Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir 19:3545–3549 Shankar SS, Bhargava S, Sastry M (2005) Synthesis of gold nanospheres and nanotriangles by the turkevich approach. J Nanosci Nanotechnol 5:1721–1727 Fang L, Li Y, Chen Z, Liu W, Zhang J, Xiang S, Shen H, Li Z, Yang B (2014) Tunable polymer brush/au nps hybrid plasmonic arrays based on host–guest interaction. ACS Appl Mater Interfaces 6:19951–19957 Amici J, Sangermano M, Celasco E, Yagci Y (2011) Photochemical synthesis of gold–polyethylenglycol core–shell nanoparticles. Eur Polym J 47:1250–1255 Shameli K, Bin Ahmad M, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, Mahdavi M, Abdollahi Y (2012) Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int J Mol Sci 13:6639 Kunst SR, Beltrami LVR, Cardoso HRP, Veja MRO, Baldin EKK, Menezes TL, Malfatti CdF (2014) Effect of curing temperature and architectural (monolayer and bilayer) of hybrid films modified with polyethylene glycol for the corrosion protection on tinplate. Mater Res 17:1071–1081 Narayan S, Rajagopalan A, Reddy JS, Chadha A (2014) BSA binding to silica capped gold nanostructures: effect of surface cap and conjugation design on nanostructure-BSA interface. RSC Adv 4:1412–1420 Xiao Y, He L, Che J (2012) An effective approach for the fabrication of reinforced composite hydrogel engineered with SWNTs, polypyrrole and PEGDA hydrogel. J Mater Chem 22:8076–8082 Zhong C, Chu CC (2012) Biomimetic mineralization of acid polysaccharide-based hydrogels: towards porous 3-dimensional bone-like biocomposites. J Mater Chem 22:6080–6087 Liu H, Qian X, Wu Z, Yang R, Sun S, Ma H (2016) Microfluidic synthesis of QD-encoded PEGDA microspheres for suspension assay. J Mater Chem B 4:482–488 He H, Adzima B, Zhong M, Averick S, Koepsel R, Murata H, Russell A, Luebke D, Takahara A, Nulwala H, Matyjaszewski K (2014) Multifunctional photo-cross linked polymeric ionic hydrogel films. Polym Chem 5:2824–2835