Polyethylene glycol (PEG) stabilized silver nanoparticles as colorimetric nano-sensor for diazinon detection in water
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aggarwal V, Deng X, Tuli A, Goh KS (2013) Diazinon-chemistry and environmental fate: a California perspective. Rev Environ Contam Toxicol 223:107–140. https://doi.org/10.1007/978-1-4614-5577-6_5
Arvand M, Mirroshandel AA (2019) An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Food Chem 280:115–122. https://doi.org/10.1016/j.foodchem.2018.12.069
Bordbar MM, Nguyen TA, Arduini F, Bagheri H (2020) A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Microchim Acta 187(11):621. https://doi.org/10.1007/s00604-020-04596-x
Brady JA, Wallender WW, Werner I, Fard BM, Zalom FG, Oliver MN, Upadhaya S (2006) Pesticide runoff from orchard floors in Davis, California, USA: A comparative analysis of diazinon and esfenvalerate. Agric Ecosyst Environ 115(1):56–68. https://doi.org/10.1016/j.agee.2005.12.009
Dahmardeh Behrooz R, Esmaili-sari A, Urbaniak M, Chakraborty P (2021) Assessing Diazinon pollution in the three major rivers flowing into the Caspian Sea (Iran). Water. https://doi.org/10.3390/w13030335
Ehrampoush MH, Sadeghi A, Ghaneian MT, Bonyadi Z (2017) Optimization of diazinon biodegradation from aqueous solutions by Saccharomyces cerevisiae using response surface methodology. AMB Express 7(1):68. https://doi.org/10.1186/s13568-017-0366-5
Farajzadeh MA, Shahedi Hojghan A, Afshar Mogaddam MR (2018) Development of a new temperature-controlled liquid phase microextraction using deep eutectic solvent for extraction and preconcentration of diazinon, metalaxyl, bromopropylate, oxadiazon, and fenazaquin pesticides from fruit juice and vegetable samples followed by gas chromatography-flame ionization detection. J Food Compos Anal 66:90–97. https://doi.org/10.1016/j.jfca.2017.12.007
Ferri D, Gaviña P, Costero AM, Parra M, Vivancos J-L, Martínez-Máñez R (2014) Detection and discrimination of organophosphorus pesticides in water by using a colorimetric probe array. Sens Actuat b: Chem 202:727–731. https://doi.org/10.1016/j.snb.2014.06.011
Gokcimen A, Gulle K, Demirin H, Bayram D, Kocak A, Altuntas I (2007) Effects of diazinon at different doses on rat liver and pancreas tissues. Pestic Biochem Physiol 87(2):103–108. https://doi.org/10.1016/j.pestbp.2006.06.011
Jemec A, Tišler T, Drobne D, Sepčić K, Fournier D, Trebše P (2007) Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere 68(8):1408–1418. https://doi.org/10.1016/j.chemosphere.2007.04.015
Jokar M, Safaralizadeh MH, Hadizadeh F, Rahmani F, Kalani MR (2016) Design and evaluation of an apta-nano-sensor to detect Acetamiprid in vitro and in silico. J Biomol Struct Dyn 34(11):2505–2517
Kermani M, Dowlati M, Gholami M, Sobhi HR, Azari A, Esrafili A, Yeganeh M, Ghaffari HR (2021) A global systematic review, meta-analysis and health risk assessment on the quantity of Malathion, Diazinon and Chlorpyrifos in Vegetables. Chemosphere 270:129382. https://doi.org/10.1016/j.chemosphere.2020.129382
Khosropour H, Rezaei B, Rezaei P, Ensafi AA (2020) Ultrasensitive voltammetric and impedimetric aptasensor for diazinon pesticide detection by VS2 quantum dots-graphene nanoplatelets/carboxylated multiwalled carbon nanotubes as a new group nanocomposite for signal enrichment. Anal Chim Acta 1111:92–102
Kim MS, Kim GW, Park TJ (2015) A facile and sensitive detection of organophosphorus chemicals by rapid aggregation of gold nanoparticles using organic compounds. Biosens Bioelectron 67:408–412
Larkin DJ, Tjeerdema RS (2000) Fate and effects of diazinon. Rev Environ Contam Toxicol 166:49–82
Mhadhbi L, Beiras R (2012) Acute Toxicity of Seven Selected Pesticides (Alachlor, Atrazine, Dieldrin, Diuron, Pirimiphos-Methyl, Chlorpyrifos, Diazinon) to the Marine Fish (Turbot, Psetta maxima). Water Air Soil Pollut 223(9):5917–5930. https://doi.org/10.1007/s11270-012-1328-9
Mohammadi P, Ghorbani M, Mohammadi P, Keshavarzi M, Rastegar A, Aghamohammadhassan M, Saghafi A (2021) Dispersive micro solid-phase extraction with gas chromatography for determination of Diazinon and Ethion residues in biological, vegetables and cereal grain samples, employing D-optimal mixture design. Microchem J 160:105680. https://doi.org/10.1016/j.microc.2020.105680
Pajooheshpour N, Rezaei M, Hajian A, Afkhami A, Sillanpää M, Arduini F, Bagheri H (2018) Protein templated Au-Pt nanoclusters-graphene nanoribbons as a high performance sensing layer for the electrochemical determination of diazinon. Sens Actuators B Chem 275:180–189. https://doi.org/10.1016/j.snb.2018.08.014
Pan X, Hu J, Li J, Zhai Y, Li S, Wang M, Tsukamoto T, Tanaka S (2022) Silver nanoparticle enhanced luminescence of [Ru(phen)3]Cl2 for thermal imaging application. Sens Actuators a: Phys 334:113312. https://doi.org/10.1016/j.sna.2021.113312
Rostiyanti H, Mubarok AZ (2021) Development of electrochemical sensors for detection of organophosphate pesticides in fruits and vegetables: a review. In IOP Conference Series: Earth and Environmental Science (Vol. 924, No. 1, p. 012005). IOP Publishing.
Salm P, Taylor PJ, Roberts D, de Silva J (2009) Liquid chromatography-tandem mass spectrometry method for the simultaneous quantitative determination of the organophosphorus pesticides dimethoate, fenthion, diazinon and chlorpyrifos in human blood. J Chromatogr B Anal Technol Biomed Life Sci 877(5–6):568–574. https://doi.org/10.1016/j.jchromb.2008.12.066
Sánchez ME, Mendez R, Gomez X, Martin-Villacorta J (2003) Determination of diazinon and fenitrothion in environmental water and soil samples by HPLC. J Liq Chromatogr Relat Technol 26(3):483–497. https://doi.org/10.1081/jlc-120017184
Shagidullin R, Lipatova I (1971) IR spectra and structures of certain organothiophosphorus compounds. Bull Acad Sci USSR Division Chem Sci 20(5):940–942. https://doi.org/10.1007/BF00862199
Shrivas K, Sahu S, Sahu B, Kurrey R, Patle TK, Kant T, Ghosh KK (2019) Silver nanoparticles for selective detection of phosphorus pesticide containing π-conjugated pyrimidine nitrogen and sulfur moieties through non-covalent interactions. J Mol Liq 275:297–303. https://doi.org/10.1016/j.molliq.2018.11.071
Sidhu GK, Singh S, Kumar V, Dhanjal DS, Datta S, Singh J (2019) Toxicity, monitoring and biodegradation of organophosphate pesticides: a review. Crit Rev Environ Sci Technol 49(13):1135–1187
Talari FF, Bozorg A, Faridbod F, Vossoughi M (2021) A novel sensitive aptamer-based nanosensor using rGQDs and MWCNTs for rapid detection of diazinon pesticide. J Environ Chem Eng 9(1):104878
Valente NI, Tarelho S, Castro AL, Silvestre A, Teixeira HM (2015) Analysis of organophosphorus pesticides in whole blood by GC-MS-μECD with forensic purposes. J Forensic Leg Med 33:28–34
Van Erp S, Booth L, Gooneratne R, O’Halloran K (2002) Sublethal responses of wolf spiders (Lycosidae) to organophosphorous insecticides. Environ Toxicol Int J 17(5):449–456
Velkoska-Markovska L, Petanovska-Ilievska B, Markovski A (2018) Application of high performance liquid chromatography to the analysis of pesticide residues in apple juice. Contemp Agric. https://doi.org/10.2478/contagri-2018-0014
Vera R, Insa S, Fontàs C, Anticó E (2018) A new extraction phase based on a polymer inclusion membrane for the detection of chlorpyrifos, diazinon and cyprodinil in natural water samples. Talanta 185:291–298. https://doi.org/10.1016/j.talanta.2018.03.056
Wang D, Singhasemanon N, Goh KS (2017) A review of diazinon use, contamination in surface waters, and regulatory actions in California across water years 1992–2014. Environ Monit Assess 189(7):310. https://doi.org/10.1007/s10661-017-6026-z
Zare F, Ghaedi M, Daneshfar A, Ostovan A (2015) Magnetic molecularly imprinted polymer for the efficient and selective preconcentration of diazinon before its determination by high-performance liquid chromatography. J Sep Sci 38(16):2797–2803. https://doi.org/10.1002/jssc.201500383