Polyethylene and biodegradable mulches for agricultural applications: a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdul-Baki A, Spence C, Hoover R (1992) Black polyethylene mulch doubled yield of fresh-market field tomatoes. HortSci 27:787–789
Abe M, Kobayashi K, Honma N, Nakasaki K (2010) Microbial degradation of poly(butylene succinate) by Fusarium solani in soil environments. Polym Degrad Stab 95(2):138–143
Abou-Zeid DM, Müller RJ, Deckwer WD (2001) Anaerobic biodegradation of natural and synthetic polyesters, Dissertation, Technical University Braunschweig, Germany. Web. http://opus.tu-bs.de/opus/volltexte/2001/246. Accessed 16 Dec 2011
Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara T (1998) Purification and properties of a polyester polyurethane degrading enzyme from Comamonas acidovorans TB-35. Appl Environ Microbiol 64:62–67
Albertsson AC (1992) Biodegradation of polymers. In: Hamid SH, Amin MB, Maadhah AG (eds) Handbook of polymer degradation. Marcel Dekker, New York, pp 345–363
Albertsson AC, Huang SJ (1995) Degradable polymers, recycling and plastics waste management. Marcel Drekker, New York
Albertsson AC, Karlsson S (1993) Aspects of biodeterioration of inert and degradable polymers. Int Biodeterior Biodegrad 31:161–170
Albertsson AC, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87
Amidon (1994) Use and disposal of plastics in agriculture. Prepared by Amidon Recycling for the American Plastics Council
Amin AR (2001) LDPE/EPDM multilayer films containing recycled LDPE for greenhouse applications. J Polym Environ 9(1):25–30
Anderson RG, Emmert EM (1994) The father of plastic greenhouses. The 25th National Agricultural Plastics Congress
Anderson DF, Garisto MA, Bourrut JC, Schonbeck MW, Jaye R, Wurzberger A, DeGregorio R (1995) Evaluation of a paper mulch made from recycled materials as an alternative to plastic film mulch for vegetables. J Sustain Agric 7:39–61
Andrady AL (1994) Assessment of environmental biodegradation of synthetic polymers. Macromol J Sci Rev Macromol Chem Phys 34:25–76
Anonymous (1999) Ecological assessment of ECM plastics. Report by Chem Risk—a service of Mc Laren Hart Inc. MicrotechResearch, Ohio, p 14
Anonymous (2002) Biodegradable plastics—developments and environmental impacts. Web http://www.europeanplasticfilms.eu/docs/AustralianReportonBiodegradablePlastics.pdf. Accessed 10 Oct 2011
Anonymous (2008) Compostable mulch films made of PLA blends. http://www.interpack.com/cipp/md_interpack/custom/pub/content,lang,2/oid,7483/ticket,g_u_e_s_t/local_lang,2/∼/Compostable_mulch_films_made_of_PLfanaA_blends.html. Accessed 23 Apr 2011
Anthony SD, Meizhong L, Christopher EB, Robin LB, David LF (2004) Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Appl Environ Microbiol 70:6092–6097
Antonious GF, Kasperbauer MJ (2002) Color of light reflected to leaves modifies nutrient content of carrot roots. Crop Sci 42:1211–1216
Anzalone A, Cirujeda A, Aibar J, Pardo G, Zaragoza C (2010) Effect of biodegradable mulch materials on weed control in processing tomatoes. Weed Technol 24(3):369–377
Armendariz R, Macua JI, Lahoz I, Santos A, Calvillo S (2006) The use of different plastic mulches on processing tomatoes. In: Ashcroft WJ (ed) Proc. 9th IS on the processing tomato. Acta Hort. 724, pp 199–202
Arnaud R, Dabin P, Lemaire J, Al-Malaika S, Chohan S, Coker M, Scott G, Fauve A, Maarooufi A (1994) Photooxidation and biodegradation of commercial photodegradable polyethylenes. Polym Degrad Stab 46:211–224
Artham T, Doble M (2008) Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 8(1):14–24
ASTM (2004) ASTM D6400-04 standard specification for compostable plastics. ASTM International, West Conshohocken
Atlas RM, Bartha R (1997) Microbial ecology: fundamentals and applications, 4th edn. Benjamin/Cummings, Menlo Park
Augusta J, Müller RJ, Widdecke H (1992) Biodegradable polymers—testing methods and assessment standards. Chem Ing Tech 64:410–415
Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864
Bahari K, Mitomo H, Enjoji T, Yohii F, Makuuchi K (1998) Radiation crosslinked poly(butylene succinate) foam and its biodegradation. Polym Degrad Stab 62(3):551–557
Ballare CL, Scopel AL, Sanchez RA (1995) Plant photomorphogenesis in canopies, crop growth and yield. HortSci 30(6):1172–1180
Barlaz MA, Ham RK, Schaefer DM (1989) Mass-balance analysis of anaerobically decomposed refuse. J Environ Eng 115:1088–1102
Barro PJ (1991) Attractiveness of four colours of traps to cereal aphids (Hemiptera: Aphididae) in South Australia. J Aust Ent Soc 30:263–264
Bastioli C, Bellotti V, Gilli G (1990) The use of agricultural commodities as a source of new plastic materials. Proc. Biodegradable packagings and agricultural films. APRIA Conference. Paris, France, 10–11 May, p.1–36
Benedict CV, Cameron JA, Samuel J (1983) Polycaprolactone degradation by mixed and pure cultures of bacteria and a yeast. J Appl Pol Sci 28:335–342
Bhella HS (1988) Tomato response to trickle irrigation and black polyethylene mulch. Amer J Soc Hort Sci 113(4):543–546
Boggs W (1959) Method of preparing polyurethane starch reaction products and product thereof. U.S. Patent No. 2,908,657, 13 October 1959
Bonora M, De Corte D (2003) Additives for controlled degradation of agricultural plastics: ENVIROCARE TM. Macromol Symp 197:443–453
Bozell JJ (ed) (2001) Chemical and materials from renewable resources. ACS Symp Ser 784, Washington, DC
Brooks TW (1996) Method and apparatus for recycling previously used agricultural plastic film mulch. U.S. Patent no. 5510076
Brown JE, Osborn MC, Bryce HM (1987) Effects of planting methods, row covers, and black plastic mulch on production and economic returns of muskmelon intercropped with broccoli. HortSci 22:1091–1109
Brown JE, Dangler JM, Woods FM, Tilt KM, Henshaw MD, Griffey WA, West MS (1993) Delay in mosaic virus onset and aphid vector reduction in summer squash grown on reflective mulches. HortSci 28(9):895–896
Byrdson JA (1970) Plastic materials, 2nd edn. Illiffe Books, London, p 597
Cannington F, Duggings RB, Roan RG (1975) Florida vegetable production using plastic film mulch with drip irrigation. Proc Nat Agr Plastics Congr 12:11–15
Carnell D (1978) Photodegradable plastic mulch in agriculture. Proc Nat Agr Plastics Congr 14:143–148
Carnell D (1980) Photodegradable mulch eliminates costly removal steps. Proc Natl Agr Plastics Congr 15:94–96
CEPA (Commonwealth Environment Protection Agency) (1992) National waste minimisation and recycling strategy. Commonwealth Government, Canberra, p 14
Chakraborty RC, Sadhu MK (1994) Effect of mulch type and color on growth and yield of tomato (Lycopersicon esculentum). Indian J Agric Sci 64(9):608–612
Chandra R, Rustgi R (1997) Biodegradation of maleated linear low-density polyethylene and starch blends. Polym Degrad Stab 56:185–202
Chen XS, Guo SF, Wang JK, Zhang J (1998) Effect of mulching cultivation with plastic film on soil microbial population and biological activity. Chin J Appl Ecol 9:435–439
Chiellini E, Cinelli P, Grillo F, Kenawy ER, Lazzeri A (2001) Gelatin-based blends and composites. Morphological and thermal mechanical characterization. Biomacromolecules 2:806–811
Chiellini E, Cinelli P, Antone SD, Ilieva VI (2002) Environmentally degradable polymeric materials (EDPM) in agricultural applications—an overview. Polimery 47(7–8):538–544
Clarke AD (1987) Some plastic industry developments, their impact on plastic film for agricultural application. Plasticulture 74:15–26
Clarke SP (1996) Recycling farm plastic films fact sheet. http://www.omafra.gov.on.ca/english/engineer/facts/95-019.htm Accessed 23 Apr 2011
Clough GH, Reed GL (1989) Durability and efficiency of photodegradable mulches in drip-irrigated vegetable production systems. Proc Natl Agr Plastics Congr 21:42–45
Coffin R, Fishman ML, Ly TV (1996) Thermomechanical properties of blends of pectin and poly(vinyl alcohol). J Appl Polym Sci 61(1):71–79
Cooper AJ (1973) Root temperature and plant growth: a review. Commonwealth Agriculture Bureaux, Slough
Corbin A, Miles CA, Hayes D, Dorgan J, Roozen J (2009) Suitability of biodegradable plastic mulches in certified organic production. HortSci 44:1040–1041
Costa L, Luda MP, Trossarelli L, BrachdelPrever EM, Crova M, Gallinaro P (1998) In vivo UHMWPE biodegradation of retrieved prosthesis. Biomaterials 19:1371–1380
Coventry JM, Fisher KH, Strommer, JN Reynolds AG (2003) Reflective mulch to enhance berry quality in Ontario wine grapes. VII International Symposium on Grapevine Physiology and Biotechnology. Acta Hort 689
Csizinszky AA, Martin FG (1988) Relation of hollow-stem in broccoli (Brassica oleracea L. Italica Group) to N and K rates in plastic mulch culture. HortSci 23(3):827
Csizinszky AA, Schuster DJ, Kring JB (1995) Color mulches influence yield and insect pest populations in tomatoes. Amer Soc Hort Sci 120(5):778–784
De Carsalade B (1986) Plastics and mulching of crops. Plasticulture 72:31–36
De Graaf RA, Karman AP, Janssen LPB (2003) Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing. Starch 55:80
De Prisco N, Immirzi B, Malinconico M, Mormile P, Petti L, Gatta G (2002) Preparation, physico-chemical characterization and optical analysis of polyvinyl alcohol-based films suitable for protected cultivation. J Appl Polym Sci 86:622–632
Debeaufort F, Quezada-Gallo JA, Voilley A (1998) Edible films and coatings: tomorrow's packagings: a review. Crit Rev Food Sci Nutr 38(4):299–313
Decoteau DR, Kasperbauer MJ, Daniels DD, Hunt PG (1988) Plastic mulch colour effects on reflected light and tomato plant growth. Sci Hortic 34:169–175
Decoteau DR, Kasperbauer MJ, Hunt PG (1989) Mulch surface color affects yield of fresh market tomatoes. Amer Soc Hort Sci 114(2):216–219
Dıaz-Perez JC, Batal KD (2002) Colored plastic film mulches affect tomato growth and yield via changes in root-zone temperature. J Amer Soc Hortic Sci 127:127–135
Dockery DW, Pope CA III (1994) Acute respiratory effects of particulate air pollution. Annual Review of Public Health 15:107–132
Doi Y (1990) Microbial polyesters. VCH, New York
Doi Y, Fukuda K (eds) (1994) Biodegradable plastics and polymers. Elsevier, Amsterdam, 1994
Doran JW (1980) Microbial changes associated with residue management with reduced tillage. Soil Sci Soc Amer J 44:518–524
Durham S (2003) Plastic mulch: harmful or helpful? Agricultural Research. July 2003. http://www.ars.usda.gov/is/AR/archive/jul03/mulch0703.pdf. Accessed 22 Sep 2011
Egley GH (1983) Weed seed and seedling reductions by soil solarization with transparent polyethylene sheets. Weed Sci 31:404–409
Elbanna K, Lütke-Eversloh T, Jendrossek D, Luftmann H, Steinbüchel A (2004) Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Arch Microbiol 182(2–3):212–225
Elliasson A, Tatham A, Dendv DAV, Dobraszczyk BJ (eds) (2001) Cereal starches and proteins. Cereals and cereals products: chemistry and technology. Aspen, Gaithersburg, pp 68–89
Emmert EM (1954) University of Kentucky builds a greenhouse covered with polyethylene. Ag News Letter 22:92–93
Emmert EM (1955) Low cost plastic greenhouses. Kentucky Ag. Ex. Station Progress Report no. 28
Emmert EM (1956) Plastic row covering. Kentucky Farm and Home Science. Spring 2(2):6–7
Emmert EM (1957) Black polyethylene for mulching vegetables. Proc Amer Soc Hort Sci 69:464–469
Ennis RS (1987) Plastigone, a new time controlled photodegradable plastic mulch film. Proc Natl Agr Plastics Congr 20:83–90
EPA (2006) An inventory of sources and environmental releases of dioxin-like compounds in the United States for the years 1987, 1995, and 2000. National Center for Environmental Assessment, Washington, DC
EPA (2008) Municipal solid waste generation, recycling and disposal in the United States: 2006 facts and figures. http://cues.rutgers.edu/bioreactorlandfill/pdfs/19-USEPA_MSW%20Facts_2006.pdf. Accessed 23 Apr 2011
EPC (2006) An inventory of agricultural film plastics for the central coast recycling market development zone. Environmental Planning Consultant, San Jose
Espi E, Salmeron A, Fontecha A, Garcia Y, Real AI (2006) Plastic films for agricultural applications. Journal of Plastic Film and Sheeting 22:85–102
Fan K, Gonzalez D, Sevoian M (1996) Hydrolytic and enzymatic degradation of poly (g-glutamic acid) hydrogels and their application in slow-release systems for proteins. J Environ Polym Degrad 4:253–260
Farias-Larios J, Orozco-Santos M, Perez J (1998) Effect of plastic mulch, floating row covers and microtunnels on insect population and yield of muskmelon. Proc Natl Agri Plast Congr 27:76–83
Ferguson WS (1957) Note on the effect of stubble and straw residue on the availability of nitrogen. Can J Soil Sci 37:145–146
Fernando WC, Suyama K, Itoh K, Tanaka H, Yamamoto H (2002) Degradation of an acylated starch-plastic mulch film in soil and impact on soil microflora. Soil Sci Plant Nutrition 48(5):701–709
Feuilloley P, Cesar L, Benguigui L, Grohens Y, Pillin I, Bewa H, Lefaux S, Jamal M (2005) Degradation of polyethylene designed for agricultural purposes. J Polym Environ 13:349–355
Fishman ML, Friedman R, Huang SJ (eds) (1994) Polymers from agricultural coproducts. ACS Symp Ser 575, Washington, DC
FLDEP (2005) Open burning, Florida Department of Environmental Protection. Chapter 62–256 of Florida Administrative Code
Fleck-Arnold JE (2000) Plastic mulch films—additives and their effects. Proc Natl Agr Plast Congr 29:310–314
Fomin VA (2001) Biodegradable polymers, their present state and future prospects. Progress In Rubber and Plastics Technology 17(3):186–204
Frazer AC (1994) O-Methylation and other transformations of aromatic compounds by acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman & Hall, New York, pp 445–483
Fukuzaki H, Yoshida M, Asano M, Kumakura M (1989) Synthesis of copoly (D, L-lactic acid) with relative low molecular weight and in vitro degradation. Eur Polym J 25:1019–1026
Garnaud JC (1974) The intensification of horticultural crop production in the Mediterranean basin by protected cultivation. FAO of the United Nations, Rome
Garthe J (2004) Managing used agricultural plastics. In: Lamont W (ed) Production of vegetables, strawberries, and cut flowers using plasticulture. Natural Resource, Agriculture, and Engineering Service (NRAES), Ithaca
Garthe JW, Miller BG, Wasco RS, Lamont WJ, Orzolek MD (2003) Used agricultural plastic as a coal fuel supplement. Proc 20th Natl Agr Plastics Congr 53–57
Giacomell GA, Garrison SA, Jensen M, Mears DR, Paterson JW, Roberts WJ, Wells OS (2000) Advances of plasticulture technologies 1977–2000. The 15th International Congress for Plastics in Agriculture, Hershey, PA
Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104
Goldberg D (1995) A review of the biodegradability and utility of poly (caprolactone). J Environ Polym Degrad 3:61–68
Gonzalez A, Lopez J, Garcia J, Hernandez MD, Rodriguez R, Fernandez JA, Franco JA (2002) Comportamiento de acolchados biodegradables en cultivo de melon al aire libre. Seminario de tecnicosy especialistas en horticultura. Ministerio de agricultura pescay alimentacion 85–90
Gopferich A (1998) Mechanisms of polymer degradation and elimination. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. Harwood Academic, Amsterdam, pp 451–471
Greer L, Dole JM (2003) Aluminum foil, aluminum-painted, plastic, and degradable mulches increase insect-vectored viral diseases of vegetables. HortTechnol 13:276–284
Grigat E, Kock R, Timmermann R (1998) Thermoplastic and biodegradable polymers of cellulose. Polym Degrad Stab 59:223–226
Gu JD, Ford TE, Mitton DB, Mitchell R (2000) Microbial degradation and deterioration of polymeric materials. In: Revie W (ed) The Uhlig corrosion handbook, 2nd edn. Wiley, New York, pp 439–460
Guerrini S (2005) Presentación de materiales biodegradables MATER-BI para acolchado. II Jornada Técnica de Materiales Biodegradables.: Los acolchados biodegradables como alternativa al uso del polietileno.15 Diciembre. Murcia. España
Guilbert S, Gontard N (2005) Agro-polymers for edible and biodegradable films: review of agricultural polymeric materials, physical and mechanical characteristics. In: Han JH (ed) Innovations in food packaging. Elsevier, Amsterdam, pp 263–276
Guilbert S, Gontard N, Gorris LGM (1996) Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. Lebensm Wiss U Technol 29:10–17
Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100
Halley P, Rutgers R, Coombs S, Kettels J, Gralton J, Christie G, Jenkins M, Beh H, Griffin K, Jayasekara R, Lonergan G (2001) Developing biodegradable mulch films from starch-based polymers. Starch 53:362–367
Ham JM, Kluitenberg GJ, Lamont WJ (1993) Optical properties of plastic mulches affect the field temperature regime. J Amer Soc Hortic Sci 118(2):188–193
Hamilton JD, Reinert KH, Hogan JV, Lord WV (1995) Polymers as solid waste in municipal landfills. J Air Waste Manage Assoc 43:247–251
Han YX, Wan X (1995) A preliminary analysis on agricultural effects of cotton field mulched with plastic film. Gansu Agric Sci Tech 8:14–16
Hankin L, Hill DE, Stephens GR (1982) Effect of mulch on bacterial populations and enzyme activity in soil and vegetable yields. Plant Soil 64:193–201
Heidary S, Gordon B (1994) Hydrolyzable poly(ethylene terephthalate). J Environ Polym Degrad 2:19–26
Hemphill DD (1993) Agricultural plastics as solid waste: what are the options for disposal? HortTechnology 3:70–73
Hill DE, Hankin L, Stephens GR (1982) Mulches: their effect on fruit set, timing and yields of vegetables. Connecticut Agric Exp Sta Bull 805:15
Hiltunen K, Seppala JV, Itavaara M, Harkonen M (1997) The biodegradation of lactic acid-based poly (ester-urethanes). J Environ Polym Degrad 5:167–173
Hocking PJ, Marchessault RH (1994) Biopolyesters. In: Griffin GJL (ed) Chemistry and technology of biodegradable polymers. Blackie Academic, New York, pp 48–96
Hogg P (2001) Plastics, rubber, and composites at Queen Mary. Plastics, Rubber, and Composites 30(5):193–194
Hong YC, Lee JT, Kim H, Ha EH, Schwartz J, Christiani DC (2002) Effects of air pollutants on acute stroke mortality. Environ Heal Perspect 110(2):187–191
Hopen JH, Oebker NF (1976) Vegetable crop responses to synthetic mulches. Univ. of Illinois, Spec. Publ. 42
Hu W, Shufen D, Qingwei S (1995) High yield technology for groundnut. International Arachis Newsletter 15:20–30
Hussain I, Hamid H (2003) Plastics in agriculture. In: Andrady AL (ed) Plastics and the environment. Wiley, Hoboken, pp 185–209
Ibarra-Jimenez L, Quezada-Martin R, Cedeno-Rubalcava B, Rio AJD, de la RosaIbarra M (2006) Watermelon response to plastic mulch and row covers. Eur J Hortic Sci 71:262–266
Ibarra-Jimenez, Zermeno-Gonzalez A, Lozano-Del Rio J, Cedeno-Rubalcava B, Ortega-Ortiz H (2008) Changes in soil temperature, yield and photosynthetic response of potato (Solanum tuberosum L.) under coloured plastic mulch. Agrochimica 52:263–272
IDDEQ (2007) Open outdoor burning guidelines. Dept of Environmental Quality (DEQ), Idaho. http://www.deq.state.id.us/air/prog_issues/burning/open_burning_overview.cfm. Accessed 23 Apr 2011
Imam SH, Cinelli P, Gordon SH, Chiellini E (2005) Characterization of biodegradable composite films prepared from blends of poly (vinyl alcohol), cornstarch and lignocellulosic fiber. J Polym Environ 13(1):47–55
Immirzi B, Malinconico M, Romano G, Russo R, Santagata G (2003) Biodegradable films of natural polysaccharides blends. J Materials Sci Letters 22(20):1389–1392
Jaworski CA, Johnson AW, Chalfant RB, Sumner DR (1974) A system approach for production of high value vegetables on southeastern coastal plain soils. Georgia Agric Res 16(2):12–15
Jayasekara R, Harding I, Bowater I, Lornergan G (2005) Biodegradability of selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J Polym Environ 13:231–251
Jendrossek D Backhaus M, Andermann M (1995) Characterization of the extracellular poly(3-hydroxybutyrate) depolymerase of Comamonas sp and its structural gene. Can J Microbiol 41(S1):160–169
Jensen MH (2004) Plasticulture in the global community—view of the past and future. American Society for Plasticulture, Bellefonte
Joel FR (1995) Polymer science and technology: introduction to polymer science, 3rd edn. Prentice Hall, Upper Saddle River, pp 4–9
Johnson H (1989) Plastigone photodegradable film performance in California. Proc Natl Agr Plastics Congr 21:1–6
Jones RAC (1991) Reflective mulch decreased the spread of two non-persistently aphid transmitted viruses to narrow-leafed lupin (Lupinus angustifoliirs). Ann Appl Biol 118:79–85
Jun HS, Kim BO, Kim YC, Chang HN, Woo SI (1994) Synthesis of copolyesters containing poly(ethylene terephthalate) and poly(e-caprolactone) units and their susceptibility to Pseudomonas sp. Lipase. J Environ Polym Degrad 2:9–18
Kale G, Auras R, Singh SP, Narayan R (2007) Biodegradability of polylactide bottles in real and simulated composting conditions. Polym Test 26:1049–1061
Kamal MR, Huang B (1992) Natural and artificial weathering of polymers. In: Hamid SH, Ami MB, Maadhan AG (eds) Handbook of polymer degradation. Marcel Dekker, New York, pp 127–168
Kapanen A, Schettini E, Vox G, Itavaara M (2008) Performance and environmental impact of biodegradable films in agriculture: a field study on protected cultivation. J Polym Environ 16(2):109–122
Kasperbauer MJ, Loughrin JH (2004) Crop ecology, management and quality: butterbean seed yield, color, and protein content are affected by photomorphogenesis. Crop Sci 22:2123–2126
Kasuya T, Nakajima H, Kitamoto K (1999) Cloning and characterization of the bipA gene encoding ER chaperone BiP from Aspergillus oryzae. J Biosci Bioeng 88(5):472–478
Kathiresan K (2003) Polythene and plastics-degrading microbes from the mangrove soil. Rev Biol Trop 51:3–4
Kawai F (1995) Breakdown of plastics and polymers by microorganisms. Adv Biochem Eng Biotechnol 52:151–194
Kelly P (2008) Mirel: compostable biobased plastics for a sustainable future. The 34th National Agricultural Plastics Congress. American Society for Plasticulture, Tampa
Kijchavengkul T (2010) Design of biodegradable aliphatic aromatic polyester films for agricultural applications using response surface methodology. Ph.D. dissertation, Michigan State University
Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2006) Development of an automatic laboratory-scale respirometric system to measure polymer biodegradability. Polym Test 25:1006–1016
Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008a) Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part I: field study. Chemosphere 71:942–953
Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008b) Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part II: laboratory simulated conditions. Chemosphere 71:1607–1616
Kim HS, Kim HJ, Lee JW, Choi IG (2006) Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil. Polym Degrad Stab 91(5):1117–1127
Kim EJ, Choi DG, Jin SN (2008) Effect of pre-harvest reflective mulch on growth and fruit of plum (Prunus domestica L.). XXVII International Horticultural Congress—IHC2006: International Symposium on Enhancing Economic and Environmental Sustainability of Fruit Production in a Global Economy. Acta Horticulturae 772
Kita K, Mashiba S, Nagita M, Ishimaru K, Okamoto K, Yanase H, Kato N (1997) Cloning of poly(3-hydroxybutyrate) depolymerase from a marine bacterium, Alcaligenes faecalis AE122, and characterization of its gene product. Biochim Biophys Acta Gene Struct Express 1352(1):113–122
Kleeberg I, Hetz C, Kroppenstedt RM, Deckwer WD (1998) Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates. Appl Environ Microbiol 64:(5)1731–1735
Kohlmunzer S (1993) Farmakognozja. PZWL, Warszawa (in Polish)
Kolybaba M, Tabil LG, Panigrahi S, Crerar WJ, Powell T, Wang B (2003) Biodegradable polymers: past, present, and future. SAE/ASAE Annual Intersectional Meeting Sponsored by the Red River Section of ASAE Quality Inn & Suites 301 3rd Avenue North Fargo, North Dakota, USA October 3–4, 2003
Kostewicz SR, Stall WM (1989) Degradable mulches with watermelons under north Florida conditions. Proc Natl Agr Plastics Congr 21:17–21
Kotrba R (2008) What to do with the remnants of a plastic culture. Biomass April 2008. http://www.biomassmagazine.com/article.jsp?article_id=1532. Accessed 23 Apr 2011
Kwabiah AB (2004) Growth and yield of sweet corn (Zea mays L.) cultivars in response to planting date and plastic mulch in a short-season environment. Scientia Horiculturae 102:147–166
Kwon (1988) The effect of different mulching materials on soil conditions with reference to red pepper production. ASPAC Food Fertilizer technology centre Extn Bulletin 277:11–24
Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15(2):125–150
Lahalih SM, Akashah SA, AlHajjar FH (1987) Development of degradable slow release multinutritional agricultural mulch film. Ind Eng Chem Res 26:2366–2372
Lamont W (1999) Vegetable production using plasticulture. http://www.agnet.org/library/eb/476/. Accessed 23 Apr 2011
Lamont W (2004a) Plastic mulches. In: Lamont W (ed) Production of vegetables, strawberries, and cut flowers using plasticulture. Natural Resource, Agriculture, and Engineering Service (NRAES), Ithaca
Lamont W (2004b) Plasticulture: an overview. In: Lamont W (ed) Production of vegetables, strawberries, and cut flowers using plasticulture. Natural Resource, Agriculture, and Engineering Service (NRAES), Ithaca
Lamont WJ (2005) Plastics: modifying the microclimate for the production of vegetable crops. HortTechnology 15:477–481
Lamont WJ, Marr CW (1990) Muskmelons, honeydews and watermelons on conventional and photodegradable plastic mulches with drip irrigation in Kansas. Proc Natl Agr Plastics Congr 22:33–39
Lamont W, Orzolek M (2004) Plasticulture glossary of terms. The American Society for Plasticulture, Bellefonte
Lawrence MJ (2007) A novel machine to produce fuel nuggets from non-recyclable plastics. Agricultural and Biological Engineering. Doctor of Philosophy Dissertation, The Pennsylvania State University, University Park
Le Moine B (2003) Mulch films: towards a new generation of rapidly decaying plastics. Plasticulture 122:7–103
Lee GF, Jones-Lee A (2007) Flawed technology of subtitle D landfilling of municipal solid waste. http://www.gfredlee.com/Landfills/SubtitleDFlawedTechnPap.pdf. Accessed 23 Apr 2011
Lee B, Pometto AL, Fratzke A, Bailey TB (1991) Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol 57:678–685
Lee GH, Bunn JM, Han YJ, Decoteau DR (1996) Determination of optimum levels of light irradiation needed to control ripening of tomatoes. Transac ASAE 39(1):169–175
Levitan L, Barro A (2003) Recycling agricultural plastics in New York state. Environmental Risk Analysis Program, Cornell Center for the Environment, Cornell University, Ithaca. http://cwmi.css.cornell.edu/recyclingagplastics.pdf. Accessed 23 Apr 2011
Li FM, Song QH, Jjemba PK, Shi YC (2004) Dynamic of microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem. Soil Biol Biochem 36:1893–1902
Li H, Chang J, Cao A, Wang J (2005) (2005) In vitro evaluation of biodegradable poly(butylene succinate) as a novel biomaterial. Macromol Biosci 5:433–440
Liakatas A, Clark JA, Monteith JL (1986) Measurements of the heat balance under plastic mulches part I. Radiation balance and soil heat flux. Agri For Meteorology 36:227–239
Lippert LF, Takatori FH, Wilding FL (1964) Soil moisture under bands of petroleum and polyethylene mulches. Proc Amer Soc Hort Sci 85:541–546
Liu Z (2005) Edible films and coatings from starches. In: Han JH (ed) Innovations in food packaging. Elsevier, Amsterdam, pp 318–337
Liu XJ, Wang JC, Lu SH, Zhang FS, Zeng XZ, Ai YW, Peng BS, Christie P (2003) Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crops Res 83:297–311
Lopez J, Gonzalez A, Fernandez JA, Banon S (2007) Behaviour of biodegradable films used for mulching in melon cultivation. In: Hanafi A, Schnitzler WH (eds) Proc. VIIIth IS on Protected Cultivation in Mild Winter Climates. Acta Hort 747, pp 125–130
Loughrin JH, Kasperbauer MJ (2002) Aroma of fresh strawberries is enhanced by ripening over red versus black mulch. J Agric Food Chem 50:161–165
Lourdin D, Valle GD, Colonna P (1995) Influence of amylose content on starch films and foams. Carbohydr Polym 27:261–270
Luo JJ (1992) A study on effects of radiation, temperature and soil water of corn planted outside plastic film cover. Gansu Agric Sci Tech 2:6–9
Maaroufi A (1993) Etude de la biodégradation de films de polyéthylène photo(bio)dégradables. Ph.D., University Blaise Pascal Clermont Ferrand II, Clermont-Ferrand
Mabrouk MM, Sabry SA (2001) Degradation of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a marine Streptomyces sp. SNG9. Microbiol 156:323–335
Malinconico M, Immirzi B, Massenti S, La Mantia FP, Mormile P, Petti L (2002) Blends of polyvinylalcohol and functionalized polycaprolactone. A study of the melt extrusion and post-cure of films suitable for protected cultivation. J Material Sci 37:4973–4978
Malinconico M, Immirzi B, Santagata G, Schettini E, Vox G, Scarascia Mugnozza G (2008) Chapter 3: an overview on innovative biodegradable materials for agricultural applications. In: Moeller HW (ed) Progress in polymer degradation and stability research. Nova Science, New York, pp 69–114
Martin-Closas L, Soler J, Pelacho AM (2003) Effect of different biodegradable mulch materials on an organic tomato production system. Ktbl schrift 414:78–85
Martin-Closas L, Bach MA, Pelacho AM (2008) Biodegradable mulching in an organic tomato production system. In: Prange RK, Bishop SD (eds) Proc. XXVII IHC-S11 Sustain through Integr and Org Hort. Acta Hort 767, pp 267–273
Martín-Closas L, Soler J, Pelacho AM (2003) Effect of different biodegradable mulch materials on an organic tomato production system. In: Biodegradable materials and natural fiber composites. KTBL Darmstadt Schrift 414:78–85
Masey PH, Jr (1972) Current utilization and new developments in agricultural plastics in U.S.A. In Proc. 5th Internat. Coll. Budapest, Hungary
Matteson N, Teny I, Ascoli-Christensen A, Gilbert C (1992) Spectral efficiency of the western flower thrips, Frankiniella occidentdis. J Insect Physiol 38(6):453–459
McCraw D, Motes JE (1991) Use of plastic mulch and row covers in vegetable production. Cooperative Extension Service. Oklahoma State University. OSU Extension Facts F-6034
MDEQ (1994) Michigan open burning guide. Michigan Department of Environmental Quality, Lansing
Miles C, Garth L, Sonde M, Nicholson M (2003) Searching for alternatives to plastic mulch. http://vegetables.wsu.edu/MulchReport03.pdf. Accessed 23 Apr 2011
Miles C, Garth L, Sonde M, Nicholson M (2005) Searching for alternatives to plastic mulch. http://biobagusa.com/MulchReport.pdf. Accessed 23 Apr 2011
Miles C, Reed J, Klinger E, Nelson, L, Smith T, Kolker K, Cross C (2006) Alternatives to plastic mulch in vegetable production systems. http://vegetables.wsu.edu/MulchReport06.pdf. Accessed 23 Apr 2011
Mitrus M, (2004) Influence of barothermal treatment on physical properties of biodegradable starchy biopolymers. Ph.D. thesis, Lublin Agricultural University, Poland
Mogilnitskii GM, Sagatelyan RT, Kutishcheva TN, Zhukova SV, Kerimov SI, Parfenova T (1987). Disruption of the protective properties of the polyvinyl chloride coating under the effect of microorganisms. Prot Met (Engl. Transl.) 23:173–175
Mooers CA, Washko JB, Young JB (1948) Effects of wheat straw, Lespedeza sericea hay, and farmyard manure as soil mulches on the conservation of moisture and the production of nitrates. Soil Sci 66:307–315
Mooney BP (2009) The second green revolution? Production of plant-based biodegradable plastics. Biochem J 418:219–232
Moore CO, Robinson JW (1968) Method for coating fruits. AE Staley Manufacturing Co. U.S. Patent 3,368,909
Mueller RJ (2006) Biological degradation of synthetic polyesters—enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128
Mulder KF (1998) Sustainable production and consumption of plastics? Technol Forecast Soc Chang 58:105–124
Muller RJ, Kleeberg I, Deckwer WD (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86(2):87–95
Munguia J, Quezada R, Zermeno A, Pena V (1998) Plastic mulch effect on the special distribution of solutes and water in the soil profile and relationship with growth and yield of muskmelon crop. Proc Natl Agr Plast Congr 27:173–177
Munn DA (1992) Comparisons of shredded newspaper and wheat straw as crop mulches. HortTechnol 2:361–366
Nakayama A, Kawasaki N, Arvanitoyannis I, Aiba S, Yamamoto N (1996) Synthesis and biodegradation of poly(γ-butyrolactone-co-L-lactide). J Environ Polym Degrad 4:205–211
Narayan R (1993) Biodegradation of polymeric materials (anthropogenic macromolecules) during composting. In: Hoitink HAJ, Keener HM (eds) Science and engineering of composting: design, environmental, microbiological and utilization aspects. Renaissance, Washington, pp 339–362
Narayan R (2001) Drivers for biodegradable/compostable plastics and role of composting waste management and sustainable agriculture. ORBIT 2001 Conference, Seville, Spain, Spanish Waste Club
Ngouajio M, Ernest J (2004) Light transmission through colored polyethylene mulches affects weed populations. HortSci 39(6):1302–1304
Ngouajio M, Goldy R, Zandstra B, Warncke D (2007) Plasticulture for Michigan Vegetable Production. Extension Bulletin E-2980 January 2007. Michigan State University, East Lansing, p 20
Ngouajio M, Auras R, Fernandez RT, Rubino M, Counts JW, Kijchavengkul T (2008) Field performance of aliphatic–aromatic copolyester biodegradable mulch films in a fresh market tomato production system. HortTechnology 18(4):605–610
Nishioka M, Tuzuki T, Wanajyo Y, Oonami H, Horiuchi T (1994) In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 584–90
NYDEC (2008) Dangers of open burning. http://www.dec.ny.gov/chemical/32064.html. Accessed 23 Apr. 2011
Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr J Biotechnol 3:18–24
Olsen JK, Gounder RK (2001) Alternatives to polyethylene mulch film: a field assessment of transported materials in capsicum (Capsicum annuum L.). Aust J Expt Agr 41:93–103
ORDEQ (2006) Oregon open burning guide. States of Oregon Department of Environmental Quality, Portland
Osawa Z (1992) Photoinduced degradation of polymers. In: Hamid SH, Amin MB, Maadhah AG (eds) Handbook of polymer degradation. Marcel Dekker, New York, pp 169–217
Otey FH, Westoff RP (1980) Biodegradable starch-based plastic films for agricultural applications. Proc Natl Agr Plastics Congr 15:90–93
Otey F, Mark A, Mehitrette C, Russell C (1974) Starch-based film for degradable agricultural mulch. Ind Eng Chem Prod Res Dev 13:90–95
Otey FH, Westhoff RP, Russell CR (1975) Starch based plastics and films. Proc. Tech. Symp. Nonwoven Product Technol. International Nonwoven Disposables Association, Miami Beach, FL, March 1975
Otey FH, Westhoff RP, Russell CR (1977) Biodegradable films from starch and ethyl-acrylic acid copolymer. Ind Eng Chem Prod Res Dev 16(4):305–308
Otey F, Westoff RP, Doane WM (1987) Starch based blown films 2. Ind Eng Chem Prod Res Dev 19:1659–1666
Pagga U, Schefer A, Muller RJ, Pantkem M (2001) Determination of the aerobic biodegradability of polymeric material in aquatic batch tests. Chemosphere 42:319–331
Palviainen P, Heinämäki J, Myllärinen P, Lahtinen R, Yliruusi J, Forssell P (2001) Corn starches as film formers in aqueous-based film coating. Pharm Develop Technol 6:353–361
Parish RL, Bracy RP, McCoy JE (2000) Evaluation of field incineration of plastic mulch. J Veg Crop Prod 6(1):17–24
Peng S, Shen K, Wang X, Liu J, Luo X, Wu L (1999) A new rice cultivation technology: plastic film mulching. Int Rice Res Newsl 24:9–10
Peterson LE, Robbins MLR (1970) Early vegetables produced with plastic mulches and mini-greenhouses. Iowa Farm Sci 2:607–608
Pranamuda H, Tokiwa Y (1999) Degradation of poly (l-lactide) by strains belonging to genus Amycolatopsis. Biotechnol Lett 21:901–905
Pranamuda H, Tokiwa Y, Tanaka H (1995) Microbial degradation of an aliphatic polyester with a high melting point, poly(tetramethylene succinate). Appl Environ Microbiol 61:1828–1832
Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol 63:1637–1640
Quezada R, De La Rosa M, Munguia J, Ibarra L, Cedeno B (2003) Differences in the degradation of padded photodegradable films, caused by the management of melon cultivation (Cucumis melo L.). Phyton, Intl J Exp Bot 72:135–142
Rajapakse NC, Kelly JW (1994) Problems of reporting spectral quality and interpreting phytochrome-mediated responses. HortSci 29:1404–1407
Rangarajan A, Ingall B (2001) Mulch color effects radicchio quality and yield. HortSci 36(7):1240–1243
Rangarajan A, Ingall B (2006) Biodegradable mulch product testing 2006. Department of Horticulture, Cornell University, Ithaca, NY, USA
Ratto J, Stenhouse PJ, Auerbach M, Mitchell J, Farrell R (1999) Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system. Polymer 40:6777–6788
Reemmer J (2009) Advances in the synthesis and extraction of biodegradable poly-hydroxyalkanoates in plant systems—a review. Basic Biotechnology 5:44–49
Rice PJ, McConnell LL, Heighton LP, Sadeghi AM, Isensee AR, Teasdale JR, Abdul-Baki AA, Harman-Fetcho JA, Hapeman CJ (2001) Runoff loss of pesticides and soil: a comparison between vegetative mulch and plastic mulch in vegetable production systems. J Environ Qual 30(5):1808–1821
Rivard C, Moens L, Roberts K, Brigham J, Kelley S (1995) Starch esters as biodegradable plastics: effects of ester group chain length and degree of substitution on anaerobic biodegradation. Enz Microbial Tech 17:848–852
Rivaton A, Gardette JL (1998) Photo-oxidation of aromatic polymers. Angew Makromol Chem 261/262:173–188
Rivise CW (1929) Mulch paper. Paper Trade J 89:55–57
Rollo KL (1997) Agricultural plastics—boon or bane? http://cwmi.css.cornell.edu/WastRed/AgWaste.html. Accessed 23 April 2011
Romen F, Reinhardt S, Jendrossek D (2004) Thermotolerant poly(3-hydroxybutyrate)-degrading bacteria from hot compost and characterization of the PHB depolymerase of Schlegelella sp. KB1a. Arch Microbiol 182:157–164
Ruiz JM, Hernandez J, Castilla N, Luis R (2002) Effect of soil temperature on K and Ca concentrations on ATPase and pyruvate kinase activity in potato roots. HortSci 37:325–328
Russo R, Giuliani A, Immirzi B, Malinconico M, Romano G (2004) Alginate/polyvinylalcohol blends for agricultural applications: structure–properties correlation, mechanical properties and greenhouse effect evaluation. Macromolecular Symposia (Current Topics in Polymer Science and Technology) 218:241–250
Russo R, Malinconico M, Petti L, Romano G (2005) Physical behaviour of biodegradable alginate–poly (vinyl alcohol) blend film. J Polym Sci: Part B: Polymer Physics 43:1205–1213
Sabir I (2004) Plastic Industry in Pakistan. http://www.jang.com.pk/thenews/investors/nov2004/index.html, Accesses 16 Dec 2010
Sanchez E, Lamont WJ, Orzolek MD (2008) Newspaper mulches for suppressing weeds for organic high-tunnel cucumber production. HortTechnol 18:154–157
Sanders DC, Prince CA, David PP (1989) Photodegradable plastics in North Carolina. Proc Natl Agr Plastics Congr 21:11–16
Schales FD (1989) Survey results on plastic mulch use in the United States. Proc Nat Agr Plastics Congr 21:95–101
Schales FD, Sheldrake R (1963) Mulch effects on soil conditions and tomato plant response. Proc Natl Agr Plast Congr 4:78–90
Schalk HJ, Matzeit V, Schiller B, Schell J, Gronenborn B (1989) Wheat dwarf virus, a geminivirus of graminaceous plants needs splicing for replication. EMBO J 8:359–364
Schettini E, Vox G, Lucia BD (2007) Effects of the radiometric properties of innovative biodegradable mulching materials on snapdragon cultivation. Sci Hortic 112:456–461
Schnabel W (1992) Polymer degradation: principles and practical applications. Hanser, New York
Schonbeck MW (1995) Mulching practices and innovations for warm season vegetables in Virginia and neighboring states. 1. An informal survey of growers. VA Assoc. Biol. Farming, Blacksburg, 24 pp
Schroeter J (1998) Creating a framework for the widespread use of biodegradable polymers. Polym Deg Stab 59:377–381
Schultz W (1983) Matching mulches. Org Gard 30(6):50
Scott G, Gilead D (eds) (1995) Degradable polymers: principles and applications. Kluwer Academic/Chapman and Hall (1995)
Selin FJ (2002) Lactic acid formed into biodegradable polymer. Adv Mater Process 160(5):13
Selke S (1996) Biodegradation and packaging (2nd ed.). Pira International Reviews
Seymour RB (1989) Polymer science before & after 1989: notable developments during the lifetime of Maurtis Dekker. J Macromol Sci Chem 26:1023–1032
Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265
Shogren RL (1999) Preparation and characterization of a biodegradable mulch: paper coated with polymerized vegetable oils. J Appl Polym Sci 73:921–967
Shogren RL, David M (2006) Biodegradable paper/polymerized vegetable oil mulches for tomato and pepper production. J Appl Hort 8:12–14
Shonbeck MW, Evanylo GK (1998) Effects of mulches on soil properties and tomato production I. Soil temperature, soil moisture and marketable yield. J Sustain Agric 13:55–81
Singh SP (1992) Studies on mulching of vegetable crops—a review. Advances in Horticulture and Forestry 2:115–143
Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72:346–352
Smith A (1931) Effect of paper mulches on soil temperature, soil moisture, and yields of crops. Hilgardia 61:592–601
Sorkin L (2006) New biodegradable mulch is cheaper than plastic when removal and disposal costs are also considered. Growing for Market. May 810
Steinbuchel A, Fuchtenbusch B (1998) Bacteria and other biological systems for polyester production. TIBTECH 16:419–427
Stevens ES (2003) What makes green plastics green? Biocycle 24:24–27
Subrahmaniyan K, Zhou WJ (2008) Soil temperature associated with degradable, non-degradable plastic and organic mulches and their effect on biomass production, enzyme activities and seed yield of winter rapeseed (Brassica napus L.). J Sust Agric 32:611–627
Suhartini M, Mitomo H, Yohii F, Nagasawa N, Kume T (2002) Radiation crosslinking of poly(butylene succinate) in the presence of inorganic material and its biodegradability. J Polym Environ 9:163–171
Summers CG, Stapleton JJ (2002) Use of UV reflective mulch to delay the colonization and reduced the severity of Bemisia argentifolii (Homoptera: Aleyrodidae) infestations in cucurbits. Crop Prot 21:921–928
Swift G (1997) Non-medical biodegradable polymers: environmentally degradable polymers. In: Domb AJ, Kost K, Wiseman DM (eds) Handbook of biodegradable polymers. Harwood Academic, Amsterdam, pp 473–511
Tachibana Y, Maeda T, Ito O, Maeda Y, Kunioka M (2009) Utilization of a biodegradable mulch sheet produced from poly(lactic acid)/Ecoflex®/modified starch in mandarin orange groves. Int J Mol Sci 10:3599–3615
Tindall JA, Beverly RB, Radcliffe DE (1991) Mulch effect on soil properties and tomato growth using micro-irrigation. Agron J 83:1028–1034
Tokiwa Y, Iwamoto A (1994) In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 190–199
Tomita K, Kuraki Y, Nagai K (1999) Isolation of thermophiles degradating poly (L-lactic acid). J Biosci Bioeng 8:752–755
Toncheva V, Bulcke AVD, Schacht E, Mergaert J, Swings J (1996) Synthesis and environmental degradation of polyesters based on poly (ε-caprolactone). J Environ Polym Degrad 4:71–83
Torres A, Li S, Roussos S, Vert M (1996) Screening of microorganisms for biodegradation of poly (lactic acid) and lactic acid-containing polymers. Appl Environ Microbiol 62:2393–2397
Tudorachi CN, Cascaval M, Rusu M, Pruteanu M (2000) Testing of polyvinyl alcohol and starch mixtures as biodegradable polymeric materials. Polymer Test 19(7):785–799
Tzankova Dintcheva N, La Mantia FP (2007) Durability of a starch-based biodegradable polymer. Polym Degrad Stabil 92:630–634
Vandenberg J, Tiessen H (1972) Influence of wax-coated and polyethylene-coated paper mulch on growth and flowering of tomato. HortSci 7:464–465
Vert M, Fejen J, Albertsson AC, Scott G, Chiellini E (eds) (1992) Biodegradable polymers and plastics. Royal Society of Chemistry, Cambridge
Vert M, Santos ID, Ponsart S, Alauzet N, Morgat JL, Coudane J, Garreau H (2002) Degradable polymers in a living environment: where do you end up? Polym Int 51:840–844
Waggoner PE, Miller PM, De Roo HC (1960) Plastic mulching: principles and benefits. Conn. Agric. Expt. Station Bull. 634
Wang Y, Inagawa Y, Saito T, Kasuya K, Doi Y, Inoue Y (2002) Enzymatic hydrolysis of bacterial poly(3-hydroxybutyrate-co-3-hydroxypropionate)s by poly(3-hydroxyalkanoate) depolymerase from Acidovorax sp. TP4. Biomacromolecules 3(4):828–834
Wang YZ, Yang KK, Wang XL, Zhou Q, Zheng CY, Chen ZF (2004) Agricultural application and environmental degradation of photo-biodegradable polyethylene mulching films. J Polym Environ 12:7–10
Warnick JP, Chase CA, Rosskopf EN, Simonne EH, Scholberg JM (2006) Weed suppression with hydramulch, a biodegradable liquid paper mulch in development. Renewable Agr Food Systems 21:216–223
Warp H (1971) Historical development of plastics for agriculture. Proc Nat Agr Plastics Cong 10:1–7
Waterer D (2010) Evaluation of biodegradable mulches for production of warm season vegetable crops. Can J Plant Sci 90:737–743
WDEQ (2005) Smoke management. Air Quality Division Standards and Regulations, Wyoming Department of Environmental Quality, Cheyenne
Webb SE, Kok-Yokomi ML, Voegtlin DJ (1994) Effect of trap color on species composition of date aphids (Homoptera: Aphididae) caught over watermelon plants. Flor Entomol 77(1):146–154
Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson GD, Handley PS (2000) Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol 66(8):3194–3200
Weber CA (2003) Biodegradable mulch films for weed suppression in the establishment year of matted-row strawberries. HortTechnol 13:665–668
Wein HC, Minotti PL, Grubinger VP (1993) Polyethylene mulch stimulates early root growth and nutrient uptake of transplanted tomatoes. J Amer Soc HortScience 118(2):207–211
Westhoff P, Otey FH, Mehltretter CL, Russell CR (1974) Starc-filled polyvinyl-chloride plastics—preparation and evaluation. Ind Eng Chem Res Dev 13(2):123–129
White JM (1988) Effect of plastic mulch beds, nitrogen fertility, and plant-populations on broccoli. HortSci 23:829
Wilson DJ, Jefferies RL (1996) Nitrogen mineralization, plant growth and goose herbivory in an arctic coastal ecosystem. J Ecol 84:841–851
Winursito I, Matsumura S (1996) Biodegradability, hydrolytic degradability, and builder performance in detergent formulations of partially dicarboxylated alginic acid. J Environ Polym Degrad 4:113–121
Witt U, Muller RJ, Deckwer WD (1997) Biodegradation behaviour and material properties of aliphatic/aromatic polyesters of commercial importance. J Environ Polymer Degrad l5:81–89
Wittwer SH, Castilla N (1995) Protected cultivation of horticultural crops worldwide. HortTechnol 5(1):83–87
Wolff IA, Davis HA, Cluskey JE, Gundrum LJ, Rist CE (1951) Preparation of films from amylose. Ind Eng Chem 43:915–991
Xu S, Lehmann RG, Miller JR, Chandra G (1998) Degradation of silicone polymer as influenced by clay minerals. Environ Sci Technol 32:1199–1206
Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72:323–327
Yang SR, Wu CH (2001) Degradable plastic films for agricultural applications in Taiwan. Macromol Symp 144(1):101–112
Yang HS, Yoon JS, Kim MN (2004) Effect of storage of a mature compost on its potential for biodegradation of plastics. Polym Degrad Stab 84(3):411–417
Zhang CE, Liang YL, He XB (2002) Effect of plastic film cover cultivation on soil microbial biomass. Acta Ecol Sin 22:508–512
Zhang Y, Han JH, Kim GN (2008) Biodegradable mulch film made of starch-coated paper and its effectiveness on temperature and moisture content of soil. Commun Soil Sci Plant Anal 39:1026–1040
Zhao JH, Wang XQ, Zeng J, Yang G, Shi FH, Yan Q (2005) Biodegradation of poly(butylene succinate) in compost. J Appl Polym Sci 97:2273–2278