Polydopamine-coated chitosan hydrogel beads for synthesis and immobilization of silver nanoparticles to simultaneously enhance antimicrobial activity and adsorption kinetics

Taoran Wang1, Wusigale1, Deepa Kuttappan2, Mary Anne Roshni Amalaradjou2, Yaguang Luo3, Yangchao Luo1
1Department of Nutritional Sciences, University of Connecticut, 27 Manter Road, Storrs, CT, 06269-4017, USA
2Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
3Food Quality, And Environmental Microbial and Food Safety Laboratories, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Asano T, Burton F, Leverenz H (2007) Water reuse: issues, technologies, and applications. McGraw-Hill Education.

Aivalioti M, Papoulias P, Kousaiti A, Gidarakos E (2012) Adsorption of BTEX, MTBE and TAME on natural and modified diatomite. J Hazard Mater 207:117–127. https://doi.org/10.1016/j.jhazmat.2011.03.040

Bandura L, Kołodyńska D, Franus W (2017) Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash. Process Saf Environ 109:214–223. https://doi.org/10.1016/j.psep.2017.03.036

Alqadami AA, Naushad M, Abdalla MA, Ahamad T, AlOthman ZA, Alshehri SM, Ghfar AA (2017) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. J Clean Prod 156:426–436. https://doi.org/10.1016/j.jclepro.2017.04.085

Giacobbo A, Meneguzzi A, Bernardes AM, de Pinho MN (2017) Pressure-driven membrane processes for the recovery of antioxidant compounds from winery effluents. J Clean Prod 155:172–178. https://doi.org/10.1016/j.jclepro.2016.07.033

Jin X, Yu B, Lin J, Chen Z (2016) Integration of biodegradation and nano-oxidation for removal of PAHs from aqueous solution. ACS Sustain. Chem Eng 4(9):4717–4723. https://doi.org/10.1021/acssuschemeng.6b00933

Yamaga F, Washio K, Morikawa M (2010) Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environ Sci Technol 44(16):6470–6474. https://doi.org/10.1021/es1007017

Gatsios E, Hahladakis JN, Gidarakos E (2015) Optimization of electrocoagulation (EC) process for the purification of a real industrial wastewater from toxic metals. J Environ Manage 154:117–127. https://doi.org/10.1016/j.jenvman.2015.02.018

Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96(13):1518–1521. https://doi.org/10.1016/j.biortech.2004.12.005

Gupta VK, Srivastava SK, Mohan D, Sharma S (1998) Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Manage 17(8):517–522. https://doi.org/10.1016/S0956-053X(97)10062-9

Foo KY, Hameed BH (2010) An overview of dye removal via activated carbon adsorption process. Desalination Water Treat. 19(1–3):255–274. https://doi.org/10.1016/j.biortech.2004.12.005

Nieuwenhuijsen MJ, Toledano MB, Eaton NE, Fawell J, Elliott P (2000) Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup Environ Med 57(2):73–85. https://doi.org/10.1136/oem.57.2.73

Jolley RL, Brungs WA, Cotruvo JA, Cumming RB, Mattice JS, Jacobs VA (1983) Water chlorination: environmental impact and health effects. Volume 4, Book 1. Chemistry and water treatment, Ann Arbor Science Publishers, Ann Arbor, MI

Centers for Disease Control and Prevention (1999) Ten great public health achievements–United States, 1900–1999. MMWR. Morbidity and mortality weekly report 48(12):241–243

Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: a review. J Adv Res 6(2):105–121. https://doi.org/10.1016/j.jare.2013.07.006

Pakdel PM, Peighambardoust SJ (2018) Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr Polym 201:264–279. https://doi.org/10.1016/j.carbpol.2018.08.070

Van Tran V, Park D, Lee YC (2018) Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ Sci Pollut Res 25(25):24569–24599. https://doi.org/10.1007/s11356-018-2605-y

Goy RC, Britto DD, Assis OB (2009) A review of the antimicrobial activity of chitosan. Polímeros 19(3):241–247. https://doi.org/10.1590/S0104-14282009000300013

Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21(6):703–714. https://doi.org/10.1016/j.fm.2004.02.008

Qu B, Luo Y (2020) Chitosan-based hydrogel beads: preparations, modifications and applications in food and agriculture sectors - a review. Int J Biol Macromol 152:437–448. https://doi.org/10.1016/j.ijbiomac.2020.02.240

Upadhyay U, Sreedhar I, Singh SA, Patel CM, Anitha KL (2021) Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr Polym 251:117000. https://doi.org/10.1016/j.carbpol.2020.117000

Wang T, Hu Q, Lee JY, Luo Y (2018) Solid lipid–polymer hybrid nanoparticles by in situ conjugation for oral delivery of astaxanthin. J Agric Food Chem. 66(36):9473-9480. https://doi.org/10.1021/acs.jafc.8b02827

Ball V (2018) Polydopamine nanomaterials: recent advances in synthesis methods and applications. Front Bioeng Biotechnol 6:109. https://doi.org/10.3389/fbioe.2018.00109

Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5(2):244–249. https://doi.org/10.1166/jnn.2005.034

Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874. https://doi.org/10.3390/molecules20058856

Govindappa M, Farheen H, Chandrappa CP, Rai RV, Raghavendra VB (2016) Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Adv Nat Sci- Nanosci Nanotechnol 7(3):035014. https://doi.org/10.1088/2043-6262/7/3/035014

Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4(1):173–185

Wu N, Du W, Hu Q, Jiang SV (2021) Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci 13:11-23. https://doi.org/10.30919/es8d1149

Kodoth AK, Badalamoole V (2020) Silver nanoparticle-embedded pectin-based hydrogel for adsorptive removal of dyes and metal ions. Polym Bull 77(2):541–564. https://doi.org/10.1007/s00289-019-02757-4

Abdelkrim S, Mokhtar A, Djelad A, Bennabi F, Souna A, Bengueddach A, Sassi M (2020) Chitosan/Ag-bentonite nanocomposites: preparation, characterization, swelling and biological properties. J Inorg Organomet Polym Mater 30(3):831–840. https://doi.org/10.1007/s10904-019-01219-8

Narayanan A, Nair MS, Muyyarikkandy MS, Amalaradjou MA (2018) Inhibition and inactivation of uropathogenic Escherichia coli biofilms on urinary catheters by sodium selenite. Int J Mol Sci 19(6). https://doi.org/10.3390/ijms19061703

Qiu Y, Zhu Z, Miao Y, Zhang P, Jia X, Liu Z, Zhao X (2020) Polymerization of dopamine accompanying its coupling to induce self-assembly of block copolymer and application in drug delivery. Polym Chem 11(16):2811–2821. https://doi.org/10.1039/D0PY00085J

Bucher T, Clodt JI, Grabowski A, Hein M, Filiz V (2017) Colour-value based method for polydopamine coating-stability characterization on polyethersulfone membranes. Membranes 7(4):70. https://doi.org/10.3390/membranes7040070

Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R (2013) Biosynthesis of silver nanoparticles using brown marine macroalga. Sargassum muticum aqueous extract. Materials 6(12):5942–5950. https://doi.org/10.3390/ma6125942

Bhagat M, Anand R, Datt R, Gupta V, Arya S (2019) Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. J Inorg Organomet Polym Mater 29(3):1039–1047. https://doi.org/10.1007/s10904-018-0994-5

Vona D, Cicco SR, Ragni R, Leone G, Presti ML, Farinola GM (2018) Biosilica/polydopamine/silver nanoparticles composites: new hybrid multifunctional heterostructures obtained by chemical modification of Thalassiosira weissflogii silica shells. MRS Commun 8(3):911–917. https://doi.org/10.1557/mrc.2018.103

Luo Y, Teng Z, Li Y, Wang Q (2015) Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr Polym 122:221–229. https://doi.org/10.1016/j.carbpol.2014.12.084

Wang T, Luo Y (2018) Chitosan hydrogel beads functionalized with thymol-loaded solid lipid-polymer hybrid nanoparticles. Int J Mol Sci 19(10):3112. https://doi.org/10.3390/ijms19103112

Ma X, Wu G, Dai F, Li D, Li H, Zhang L, Deng H (2021), Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications. Carbohydr Polym 251:110758. https://doi.org/10.1016/j.carbpol.2020.117058

Ngoc-Thang N, Liu J-H (2014) A green method for in situ synthesis of poly(vinyl alcohol)/chitosan hydrogel thin films with entrapped silver nanoparticles. J Taiwan Inst Chem Eng 45(5):2827–2833. https://doi.org/10.1016/j.jtice.2014.06.017

Nesovic K et al (2019) Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles - in vitro study. Eur Polym J 121:109257. https://doi.org/10.1016/j.eurpolymj.2019.109257

Qu X, Wirsen A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 41(12):4589–4598. https://doi.org/10.1016/S0032-3861(99)00685-0

El-Hady A, Saeed S (2020) Antibacterial properties and pH sensitive swelling of insitu formed silver-curcumin nanocomposite based chitosan hydrogel. Polymers 12(11):2451. https://doi.org/10.3390/polym12112451

Yao KD et al (1994) Swelling kinetics and release characteristic of cross-linked chitosan - polyether polymer network (semi-ipn) hydrogels. J Polym Sci Part A- Polym Chem 32(7):1213–1223. https://doi.org/10.1002/pola.1994.080320702

Masood N et al (2019) Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm 559:23–36. https://doi.org/10.1016/j.ijpharm.2019.01.019

Thamer BM et al (2020) In situ preparation of novel porous nanocomposite hydrogel as effective adsorbent for the removal of cationic dyes from polluted water. Polymers 12(12). https://doi.org/10.3390/polym12123002

Chatterjee S, Lee MW, Woo SH (2010) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101(6):1800–1806. https://doi.org/10.1016/j.biortech.2009.10.051

Fan C et al (2016) The stability of magnetic chitosan beads in the adsorption of Cu2+. RSC Adv 6(4):2678–2686. https://doi.org/10.1039/C5RA20943A

Fan C et al (2018) Evaluation of magnetic chitosan beads for adsorption of heavy metal ions. Sci Total Environ 627:1396–1403. https://doi.org/10.1016/j.scitotenv.2018.02.033

IM Kenawy et al (2019) Melamine grafted chitosan-montmorillonite nanocomposite for ferric ions adsorption: central composite design optimization study J Clean Prod 241.https://doi.org/10.1016/j.jclepro.2019.118189

Futalan CM et al (2012) Copper, nickel and lead adsorption from aqueous solution using chitosan-immobilized on bentonite in ternary system. Sustain Environ Res 22(6):345–355

Durán N et al (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed-Nanotechnol Biol Med 12(3):789–799. https://doi.org/10.1016/j.nano.2015.11.016

Roy A et al (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9(5):2673–2702. https://doi.org/10.1039/C8RA08982E

Feng QL et al (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668. https://doi.org/10.1002/1097-4636(20001215)52:4%3C662::AID-JBM10%3E3.0.CO;2-3

Kim JS et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol Biol Med 3(1):95–101. https://doi.org/10.1016/j.nano.2006.12.001

Vertelov GK et al (2008) A versatile synthesis of highly bactericidal Myramistin (R) stabilized silver nanoparticles. Nanotechnology 19(35). https://doi.org/10.1088/0957-4484/19/35/355707

Piras CC, Mahon CS, Smith DK (2020) Self-assembled supramolecular hybrid hydrogel beads loaded with silver nanoparticles for antimicrobial applications. Chem Eur J 26(38):8452–8457. https://doi.org/10.1002/chem.202001349

Park S et al (2018) Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. Sci Total Environ 625:477–485. https://doi.org/10.1016/j.scitotenv.2017.12.318

Long YM et al (2017) Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. Int J Nanomed 12:3193–3206. https://doi.org/10.2147/IJN.S132327

Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175. https://doi.org/10.1021/es9035557