Polycyclic Aromatic Hydrocarbons Removal from Aqueous Solution with PABA-MCM-41/Polyethersulfone Mixed Matrix Membranes

Silicon - Tập 14 - Trang 3879-3890 - 2021
José Arnaldo S. Costa1, Victor H. V. Sarmento2, Luciane P. C. Romão3, Caio M. Paranhos1
1CDMF, Polymer Laboratory, Department of Chemistry, Federal University of São Carlos, São Paulo, Brazil
2Department of Chemistry, Federal University of Sergipe, Itabaiana, Brazil
3Department of Chemistry, Federal University of Sergipe, São Cristóvão, Brazil

Tóm tắt

Polycyclic aromatic hydrocarbons (PAHs) are one of the most recalcitrant pollutant originated from the burning of coal, petroleum, and other fossil fuels. The human exposure to PAHs may contribute to develop several carcinogenesis mechanisms. The aim of the present study was to develop a mixed matrix membrane (MMM) based on polyethersulfone (PES) and functionalized mesoporous material for the remediation of PAHs mixture by adsorption processes. MCM-41-based mesoparticles were obtained from biomass reuse of rice husk ash (RHA) and functionalized with p-aminobenzoic acid (PABA). The hydrothermal and casting methods were effective and sustainable in the preparation of PABA-MCM-41 and PES-based MMMs, respectively. PES-based MMMs presented an excellent distribution of the arrays incorporated and small-angle ordering. The absorption of PAHs was influenced by the incorporation of PABA-MCM-41 within the PES matrix.

Tài liệu tham khảo

Dai Y, Niu J, Yin L, Xu J, Xu J (2013) Laccase-carrying electrospun fibrous membrane for the removal of polycyclic aromatic hydrocarbons from contaminated water. Sep Purif Technol 104:1–8. https://doi.org/10.1016/j.seppur.2012.11.013 Bertelle S, Gupta T, Roizard D, Vallières C, Favre E (2006) Study of polymer-carbon mixed matrix membranes for CO2 separation from flue gas. Desalination 199:401–402. https://doi.org/10.1016/j.desal.2006.03.207 Scholes C, Scholes CA, Kentish SE, Stevens GW (2008) Carbon dioxide separation through polymeric membrane systems for flue gas applications flue gas applications. 51–66 1:52–66. https://doi.org/10.2174/1874478810801010052 Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Memb Sci 359:115–125. https://doi.org/10.1016/j.memsci.2009.11.040 Arjmandi M, Pakizeh M (2014) Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: theory and experiment. J Ind Eng Chem 20:3857–3868. https://doi.org/10.1016/j.jiec.2013.12.091 Kim S, Pechar TW, Marand E (2006) Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 192:330–339. https://doi.org/10.1016/j.desal.2005.03.098 Basu S, Cano-Odena A, Vankelecom IFJ (2011) MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep Purif Technol 81:31–40. https://doi.org/10.1016/j.seppur.2011.06.037 Mohshim DF, Mukhtar H, Man Z (2017) A study on carbon dioxide removal by blending the ionic liquid in membrane synthesis. Sep Purif Technol 196:20–26. https://doi.org/10.1016/j.seppur.2017.06.034 Neyertz S, Brown D (2016) Nanosecond-time-scale reversibility of dilation induced by carbon dioxide sorption in glassy polymer membranes. J Memb Sci 520:385–399. https://doi.org/10.1016/j.memsci.2016.08.003 da Costa CG, Pinho NC, Alves Silva IA et al (2019) Removal of heavy crude oil from water surfaces using a magnetic inorganic-organic hybrid powder and membrane system. J Environ Manag 247:9–18. https://doi.org/10.1016/j.jenvman.2019.06.050 Bao Y, Yan X, Du W et al (2015) Application of amine-functionalized MCM-41 modified ultrafiltration membrane to remove chromium (VI) and copper (II). Chem Eng J 281:460–467. https://doi.org/10.1016/j.cej.2015.06.094 Bernardo P, Bazzarelli F, Tasselli F, Clarizia G, Mason CR, Maynard-Atem L, Budd PM, Lanč M, Pilnáček K, Vopička O, Friess K, Fritsch D, Yampolskii YP, Shantarovich V, Jansen JC (2017) Effect of physical aging on the gas transport and sorption in PIM-1 membranes. Polymer (Guildf) 113:283–294. https://doi.org/10.1016/j.polymer.2016.10.040 Gao A, Xie K, Song X, Zhang K, Hou A (2017) Removal of the heavy metal ions from aqueous solution using modified natural biomaterial membrane based on silk fibroin. Ecol Eng 99:343–348. https://doi.org/10.1016/j.ecoleng.2016.11.008 Costa JAS, Sarmento VHV, Romão LPC, Paranhos CM (2020) Removal of polycyclic aromatic hydrocarbons from aqueous media with polysulfone/MCM-41 mixed matrix membranes. J Memb Sci 601:117912. https://doi.org/10.1016/j.memsci.2020.117912 Chung TS, Chan SS, Wang R, Lu Z, He C (2003) Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes. J Memb Sci 211:91–99. https://doi.org/10.1016/S0376-7388(02)00385-X Torresi E, Polesel F, Bester K, Christensson M, Smets BF, Trapp S, Andersen HR, Plósz BG (2017) Diffusion and sorption of organic micropollutants in biofilms with varying thicknesses. Water Res 123:388–400. https://doi.org/10.1016/j.watres.2017.06.027 Xu J, Niu J, Zhang X, Liu J, Cao G, Kong X (2015) Sorption of triclosan on electrospun fibrous membranes: effects of pH and dissolved organic matter. Emerg Contam 1:25–32. https://doi.org/10.1016/j.emcon.2015.05.002 Qing W, Chen J, Shi X, Wu J, Hu J, Zhang W (2017) Conversion enhancement for acetalization using a catalytically active membrane in a pervaporation membrane reactor. Chem Eng J 313:1396–1405. https://doi.org/10.1016/j.cej.2016.11.053 Keraani A, Rabiller-Baudry M, Fischmeister C, Delaunay D, Baudry A, Bruneau C, Renouard T (2017) First elaboration of an olefin metathesis catalytic membrane by grafting a Hoveyda–Grubbs precatalyst on zirconia membranes. Comptes Rendus Chim 20:952–966. https://doi.org/10.1016/j.crci.2017.04.003 Bai Y, Schaberg MS, Hamrock SJ, Tang Z, Goenaga G, Papandrew AB, Zawodzinski Jr TA (2017) Density measurements and partial molar volume analysis of different membranes for polymer electrolyte membrane fuel cells. Electrochim Acta 242:307–314. https://doi.org/10.1016/j.electacta.2017.04.048 Wang H, da Costa JCD (2017) Membranes and fuel cells for fuel processing. Fuel Process Technol 161:240. https://doi.org/10.1016/j.fuproc.2016.11.006 Omasta TJ, Wang L, Peng X, Lewis CA, Varcoe JR, Mustain WE (2017) Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. J Power Sources 375:205–213. https://doi.org/10.1016/j.jpowsour.2017.05.006 Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membranes for medium temperature fuel cells (110–160 °C). J Membr Sci 185:73–81 Macedonio F, Ali A, Drioli E (2017) Membrane distillation and osmotic distillation. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 3.10 Membrane Distillation and Osmotic Distillation Luo A, Lior N (2017) Study of advancement to higher temperature membrane distillation. Desalination 419:88–100. https://doi.org/10.1016/j.desal.2017.05.020 Zhong W, Hou J, Yang H-C, Chen V (2017) Superhydrophobic membranes via facile bio-inspired mineralization for vacuum membrane distillation. J Memb Sci 540:98–107. https://doi.org/10.1016/j.memsci.2017.06.033 Sevelsted A, Stokholm J, Bisgaard H (2016) Risk of asthma from cesarean delivery depends on membrane rupture. J Pediatr 171:38–42.e4. https://doi.org/10.1016/j.jpeds.2015.12.066 Sun W, Ji W, Hu Q, Yu J, Wang C, Qian C, Hochu G, Gu Z (2016) Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine. Biomaterials 96:1–10. https://doi.org/10.1016/j.biomaterials.2016.04.011 Luk BT, Zhang L (2015) Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 220:600–607. https://doi.org/10.1016/j.jconrel.2015.07.019 Chung TS, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507. https://doi.org/10.1016/j.progpolymsci.2007.01.008 Khan AL, Cano-Odena A, Gutiérrez B, Minguillón C, Vankelecom IFJ (2010) Hydrogen separation and purification using polysulfone acrylate-zeolite mixed matrix membranes. J Memb Sci 350:340–346. https://doi.org/10.1016/j.memsci.2010.01.009 Costa JAS, Costa VC, Pereira-Filho ER, Paranhos CM (2020) Removal of Cr(VI) from wastewater of the tannery industry by functionalized mesoporous material. Silicon 12:1895–1903. https://doi.org/10.1007/s12633-019-00315-1 Costa JAS, Sarmento VHV, Romão LPC, Paranhos CM (2020) Performance of the MCM-41-NH2 functionalized mesoporous material synthetized from the Rice husk ash on the removal of the polycyclic aromatic hydrocarbons. Silicon 12:1913–1923. https://doi.org/10.1007/s12633-019-00289-0 Costa JAS, Sarmento VHV, Romão LPC, Paranhos CM (2019) Adsorption of organic compounds on mesoporous material from rice husk ash (RHA). Biomass Convers Biorefinery 10:1105–1120. https://doi.org/10.1007/s13399-019-00476-4 Costa JAS, Garcia ACFS, Santos DO, Sarmento VHV, de Mesquita ME, Romão LPC (2015) Applications of inorganic-organic mesoporous materials constructed by self-assembly processes for removal of benzo[k]fluoranthene and benzo[b]fluoranthene. J Sol-Gel Sci Technol 75:495–507. https://doi.org/10.1007/s10971-015-3720-6 Santos DO, Santos MLN, Costa JAS et al (2013) Investigating the potential of functionalized MCM-41 on adsorption of Remazol red dye. Environ Sci Pollut Res 20:5028–5035. https://doi.org/10.1007/s11356-012-1346-6 Costa JAS, Vedovello P, Paranhos CM (2020) Use of ionic liquid as template for hydrothermal synthesis of the MCM-41 mesoporous material. Silicon 12:289–294. https://doi.org/10.1007/s12633-019-00121-9 Santos LFS, de Jesus RA, Costa JAS, Gouveia LGT, de Mesquita ME, Navickiene S (2019) Evaluation of MCM-41 and MCM-48 mesoporous materials as sorbents in matrix solid phase dispersion method for the determination of pesticides in soursop fruit (Annona muricata). Inorg Chem Commun 101:45–51. https://doi.org/10.1016/j.inoche.2019.01.013 Costa JAS, Garcia ACFS, Santos DO, Sarmento VHV, Porto ALM, Mesquita ME, Romão LPC (2014) A new functionalized MCM-41 mesoporous material for use in environmental applications. J Braz Chem Soc 25:197–207. https://doi.org/10.5935/0103-5053.20130284 Costa JAS, de Jesus RA, Dorst DD, Pinatti IM, Oliveira LMR, de Mesquita ME, Paranhos CM (2017) Photoluminescent properties of the europium and terbium complexes covalently bonded to functionalized mesoporous material PABA-MCM-41. J Lumin 192:1149–1156. https://doi.org/10.1016/j.jlumin.2017.08.046 Costa JAS, de Jesus RA, da Silva CMP, Romão LPC (2017) Efficient adsorption of a mixture of polycyclic aromatic hydrocarbons (PAHs) by Si–MCM–41 mesoporous molecular sieve. Powder Technol 308:434–441. https://doi.org/10.1016/j.powtec.2016.12.035 Costa JAS, de Jesus RA, Santos DO, Neris JB, Figueiredo RT, Paranhos CM (2021) Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: a review. J Environ Chem Eng 9:105259. https://doi.org/10.1016/j.jece.2021.105259 Costa JAS, de Jesus RA, Santos DO, Mano JF, Romão LPC, Paranhos CM (2020) Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microporous Mesoporous Mater 291:109698. https://doi.org/10.1016/j.micromeso.2019.109698 IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans: some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Iarc Monogr Eval Carcinog Risks To Humans 92:1–868 U.S. EPA (1993) Provisional Guidance forQuantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. EPA/600/R-:1–28 Costa JAS, Sarmento VHV, Romão LPC, Paranhos CM (2019) Synthesis of functionalized mesoporous material from rice husk ash and its application in the removal of the polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 26:25476–25490. https://doi.org/10.1007/s11356-019-05852-1 Costa JAS, Paranhos CM (2018) Systematic evaluation of amorphous silica production from rice husk ashes. J Clean Prod 192:688–697. https://doi.org/10.1016/j.jclepro.2018.05.028 Khan AL, Klaysom C, Gahlaut A, Vankelecom IFJ (2013) Polysulfone acrylate membranes containing functionalized mesoporous MCM-41 for CO2 separation. J Memb Sci 436:145–153. https://doi.org/10.1016/j.memsci.2013.02.023 ASTM (1995) Standard test methods for water vapor transmission of materials. 96–94:1–10. https://doi.org/10.1520/G0154-12A Costa JAS, Paranhos CM (2019) Evaluation of rice husk ash in adsorption of Remazol red dye from aqueous media. SN Appl Sci 1:397. https://doi.org/10.1007/s42452-019-0436-1 Rabiller-Baudry M, Bouzin A, Hallery C, Girard J, Leperoux C (2015) Evidencing the chemical degradation of a hydrophilised PES ultrafiltration membrane despite protein fouling. Sep Purif Technol 147:62–81. https://doi.org/10.1016/j.seppur.2015.03.056 Dorosti F, Omidkhah MR, Pedram MZ, Moghadam F (2011) Fabrication and characterization of polysulfone/polyimide-zeolite mixed matrix membrane for gas separation. Chem Eng J 171:1469–1476. https://doi.org/10.1016/j.cej.2011.05.081 Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy, 3a. Thomson learning, Inc. 680 p., Washington D. C Helin H, Na L, Linlin W et al (2008) Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method. J Environ Sci 20:565–570. https://doi.org/10.1016/S1001-0742(08)62095-1 STRUŻYŃSKA-PIRON I, BILAD MR, LOCCUFIER J et al (2014) Influence of UV curing on morphology and performance of polysulfone membranes containing acrylates. J Memb Sci 462:17–27. https://doi.org/10.1016/j.memsci.2014.03.013