Polycyclic Aromatic Hydrocarbon (PAH) o-Quinones Produced by the Aldo-Keto-Reductases (AKRs) Generate Abasic Sites, Oxidized Pyrimidines, and 8-Oxo-dGuo via Reactive Oxygen Species
Tóm tắt
Từ khóa
Tài liệu tham khảo
Xue W., 2005, Toxicol. Appl. Pharmacol., 206, 93
Rothman N., 1990, Formation of polycyclic aromatic hydrocarbon-DNA adducts in peripheral white blood cells during consumption of charcoal-broiled beef. Carcinogenesis 11, 1241−1243
Denissenko M. F., 1996, Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274, 430−432
Conney A. H., 1982, Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons. G. H. A. Clowes Memorial Lecture. Cancer Res. 42, 4875−4917
Palackal N. T., 2001, Metabolic activation of polycyclic aromatic hydrocarbon trans-dihydrodiols by ubiquitously expressed aldehyde reductase (AKR1A1). Chem.-Biol. Interact. 130−132, 815−824
Jiang, H., Shen, Y. M., Quinn, A. M., and Penning, T. M. (2005) Competing roles of cytochrome P450 1A1/1B1 and aldo-keto reductase 1A1 in the metabolic activation of (±)-7,8-dihydroxy-7,8-dihydro-benzo[a]pyrene in human bronchoalveolar cell extracts.Chem. Res. Toxicol. 18, 365−374.
Flowers L., 1992, Biochem. Life Sci. Adv., 11, 58
Flowers L., 1997, Cu(II)/Cu(I) redox cycling and o-semiquinone anion radicals. Biochemistry 36, 8640−8648.
Balu N., 2004, Identification and characterization of novel stable deoxyguanosine and deoxyadenosine adducts of benzo[a]pyrene-7,8-quinone from reactions at physiological pH. Chem. Res. Toxicol. 17, 827−838
Shou M., 1993, Reactivity of benzo[a]pyrene-7,8-dione with DNA. Evidence for the formation of deoxyguanosine adducts. Carcinogenesis 14, 475−482
McCoull K. D., 1999, Synthesis and characterization of polycyclic aromatic hydrocarbon o-quinone depurinating N7-guanine adducts. Chem. Res. Toxicol. 12, 237−246
Ohnishi S., 2002, Double base lesions of DNA by a metabolite of carcinongenic benzo[a]pyrene. Biochem. Biophys. Res. Commun. 290, 778−782
Seike K., 2003, Oxidative DNA damage induced by benz[a]anthracene metabolites via redox cycles of quinone and unique non-quinone. Chem. Res. Toxicol. 16, 1470−1476
Park J. H., 2005, Formation of 8-oxo-7,8-dihydro-2‘-deoxyguanosine (8-oxo-dGuo) by PAH o-quinones: involvement of reactive oxygen species and copper(II)/copper(I) redox cycling. Chem. Res. Toxicol. 18, 1026−1037
Lee S. H., 2002, N6-etheno-2‘-deoxyadenosine and 1, N2-etheno-2‘-deoxyguanosine adducts. Chem. Res. Toxicol. 15, 300−304.
Frenkel K., 1995, 7,12-Dimethylbenz[a]anthracene induces oxidative DNA modification in vivo. Free Radical Biol. Med. 19, 373−380
Leadon S. A., 1988, Proc. Natl. Acad. Sci. U.S.A. 85
Leadon S. A., 1995, Coal tar residues produce both DNA adducts and oxidative DNA damage in human mammary epithelial cells. Carcinogenesis 16, 3021−3026
Tang D. W., 2004, Toxicol. Lett., 152
Chen, H. J. C., and Chiu, W. L. (2005) Association between cigarette smoking and urinary excretion of 1,N2-ethenoguanine measured by isotope dilution liquid chromatography-electrospray ionization/tandem mass spectrometry.Chem. Res. Toxicol. 18, 1593−1599.
Yu, D., Berlin, J. A., Penning, T. M., and Field, J. (2002) Reactive oxygen species generated by PAHo-quinones cause change-in-function mutations in p53.Chem. Res. Toxicol. 15, 832−842.
Harvey R. G., 2004, J. Org. Chem., 69
Fu P. P., 1979, J. Org. Chem., 44
Nakamura J., 1998, Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res. 58, 222−225
Nakamura J., 1999, Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 59, 2522−2526
Zielinska-Park J., 2004, Aldehydic DNA lesions in calf thymus DNA and Hela S3 cells produced by bacterial quinone metabolites of fluranthene and pyrene. Carcinogenesis 25, 1727−1733
Casadevall M., 1999, Chromium (VI)-mediated DNA damage: oxidative pathway resulting in the formation of DNA breaks and abasic sites. Chem.-Biol. Interact. 123, 117−132
Greenberg M. M., 2004, vitro replication and repair of DNA containing a C2‘-oxidized abasic sites. Biochemistry 43, 15217−15222
Karahalil, B., Girard, P. M., Boiteux, S., and Dizdaroglu, M. (1998) Substrate specificity of the Ogg1 protein ofSaccharomyces cerevisiae: excision of guanine lesions produced in DNA by ionizing radiation- or hydrogen peroxide/metal ion-generated free radicals.Nucleic Acids Res. 26, 1228−1232.
Boiteux, S., Gajewski, E., Laval, J., and Dizdaroglu, M. (1992) Substrate specificity of theEscherichia coliFpg protein formamidopyrimidine-DNA glycosylase: excision of purine lesions in DNA produced by ionizing radiation or photosensitization.Biochemistry 31, 106−110.
Kreutzer D. A., 1998, Proc. Natl. Acad. Sci. U.S.A. 95
Basu A. K., 1989, Proc. Natl. Acad. Sci. U.S.A. 86
Pflaum M., 1994, Visible light generates oxidative DNA base modifications in high excess of strand breaks in mammalian cells. Carcinogenesis 15, 297−300
Sagher D., 1985, Abasic sites from cytosine as termination signals for DNA synthesis. Nucleic Acids Res. 13, 4285−4298
Lee Y. H., 2003, High temperature dependence of 2,4-dichlorophenoxyacetic acid degradation by Fe3+/H(2)O(2) system. Chemosphere 51, 963−971
Dizdaroglu M., 1985, Formation of an 8-hydroxyguanine moiety in deoxyribonucleic acid on γ-irradiation in aqueous solution. Biochemistry 24, 4476−4481
Abbreviations ADL, aldehydic DNA lesion