Polyacetylene as heterogeneous catalyst for electroless deposition of bulk amorphous metals

Journal of Materials Research - Tập 5 - Trang 1697-1702 - 2011
S. J. Kamrava1, S. Söderholm1
1Department of Materials Science, The Royal Institute of Technology, Stockholm, Sweden

Tóm tắt

Polyacetylene shows catalytic activity in an aqueous solution for electroless deposition of amorphous alloys. The catalytic activity of polyacetylene is comparable to the activity of some highly catalytic metals, i.e., Cu, steel, and Pt. Modifications of the Shirakawa technique led to the formation of a foam-like polyacetylene, which is highly porous and has a low degree of crystallinity. This material can be used as a catalytic substrate for the preparation of amorphous metals in bulk form. The amorphous Ni–Co–B and Ni–Co–P alloys deposited on a PAc substrate were investigated by magneto-thermogravimetry and x-ray diffraction. These investigations gave a Curie temperature of about 413 K and a crystallization temperature of about 600 K for the metal-metalloid component of the system.

Tài liệu tham khảo

G. Dietz, J. Mag. and Mag. Material 6, 47 (1977). J. Flechon and M. Viord, C. R. Acad. Sci. B 270, 556 (1970). L. A. Chekanova, R. S. Iskhakov, G. I. Fish, R. G. Khlebopros, and N. S. Chistyakov, JETP Lett. 20, 31 (1974). A. W. Simpson and W. G. Clements, Wiss. Z. Technol. Univ. Dresden 23, 1024 (1974). A. W. Simpson and W. G. Clements, IEEE Trans. Magn. Mag. 11, 1338 (1974). T. Watanabe and Y. Tanabe, Proc. 4th Int. Conf. on Rapidly Quenched Metals (Sendai, 1981), p. 51. A. Brenner and G. E. Riddle, J. Res. Natl. Bur. Stand. 39, 385 (1947). R. M. Lukes, Plating 51, 969 (1964). A. Brenner and G. E. Riddle, J. Res. Natl. Bur. Stand. 37, 31 (1946). J. Flechon, F. A. Kuhnast, and A. Rashid, Mater. Chem. and Phys. 11, 453 (1984). G. Salvago and P. L. Covollotti, Plating 59, 665 (1972). A. W. Simpson and D. R. Brambley, Phys. Status Solidi B 43, 291 (1971). R. G. Nowak, H. B. Mark, Jr., A. G. MacDiarmid, and D. Weber, J. Chem. Soc. Commun. 1977, 9 (1977). R. G. Nowak, W. Kitner, H. B. Mark, Jr., and A. G. MacDiarmid, J. Electrochem. Soc. 125, 232 (1978). J. C. W. Chien, Polyacetylene, Chemistry, Physics, and Materials Science (Academic Press, New York, 1984), p. 149. R. J. Mammone, in Conducting Polymers Special Applications, edited by L. Alcacer (D. Reidel, Dordrecht, 1987), p. 161. H. Shirakawa, A. Hamono, S. Kawakami, K. Soga, and S. Ikeda, Macromolecules 13, 457 (1980). K. Soga and S. Ikeda, in Handbook of Conducting Polymer, edited by T. A. Skotheim (Dekker, New York, 1986), p. 661. H. Shirakawa and T. Kobayashi, J. Phys. (Paris) C3, 3 (1983). J. R. Reynolds, J. C. W. Chien, F. E. Karasz, C. P. Lillya, and D. J. Curran, J. Phys. (Paris) C3, 171 (1983). R. B. Björklund and I. Lundström, J. Electron. Mater. 13, 211 (1984). S. Brunauer, T. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938). O. V. Krylov, Catalysis by Nonmetals. Roles for Catalyst Selection (Academic Press, New York, 1970). A. Pron, D. Billaud, P. Bernier, and S. Lefrant, Polym. Prep. 23, 96 (1983). R. J. Cohen and A. J. Click, Phys. Rev. B 40, 8010 (1989). A. Janossy, L. Pogany, S. Pekker, and R. Swietlik, Mol. Cryst. Liq. Cryst. 77, 185 (1981). H. Kiess, W. Meyer, D. Beariswly, and G. Harbeke, J. Electron. Mater. 9, 763 (1980). J. C. W. Chien, J. D. Capistran, L. C. Dickinson, F. E. Karasz, and M. A. Schen, J. Polym. Sci., Polym. Lett. Ed. 21, 93 (1982). J. C. W. Chien, X. Yang, and L. C. Dickinson, Macromolecules 16, 1694 (1983). J. C. W. Chien, Polyacetylene, Chemistry, Physics, and Materials Science (Academic Press, New York, 1984), p. 93.