Poly(methyl orange)-modified NiO/MoS2/SPCE for a non-enzymatic detection of cholesterol

FlatChem - Tập 29 - Trang 100285 - 2021
Harits A. Ariyanta1,2, Tribidasari A. Ivandini1, Yoki Yulizar1
1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
2Department of Pharmacy, Universitas Gunadarma, Depok 16424, Indonesia

Tài liệu tham khảo

Rastogi, 2021, Selective and sensitive detection of cholesterol using intrinsic peroxidase-like activity of biogenic palladium nanoparticles, Curr. Res. Biotechnol., 3, 42, 10.1016/j.crbiot.2021.02.001 Y. Lu, H. Li, X. Qian, W. Zheng, Y. Sun, B. Shi, Y. Zhang, Optical Fiber Technology Beta-cyclodextrin based reflective fi ber-optic SPR sensor for highly-sensitive detection of cholesterol concentration, 56 (2020). doi:10.1016/j.yofte.2020.102187. Rahman, 2020, Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs, Sens. Bio-Sensing Res., 29, 100356, 10.1016/j.sbsr.2020.100356 Li, 2018, Bifunctional magnetic nanoparticles for efficient cholesterol detection and elimination via host-guest chemistry in real samples, Biosens. Bioelectron., 120, 137, 10.1016/j.bios.2018.08.046 Nawaz, 2018, Development of a disposable electrochemical sensor for detection of cholesterol using differential pulse voltammetry, J. Pharm. Biomed. Anal., 159, 398, 10.1016/j.jpba.2018.07.005 Guan, 2020, Colorimetric detection of cholesterol based on peroxidase mimetic activity of GoldMag nanocomposites, Spectrochim, Acta Part A Mol. Biomol. Spectrosc., 241, 118675, 10.1016/j.saa.2020.118675 Bairagi, 2018, Electrochemically deposited dendritic poly (methyl orange) nanofilm on metal-carbon-polymer nanocomposite: a novel non-enzymatic electrochemical biosensor for cholesterol, J. Electroanal. Chem., 814, 134, 10.1016/j.jelechem.2018.02.011 Li, 2019, Analytical methods for cholesterol quantification, J. Food Drug Anal., 27, 375, 10.1016/j.jfda.2018.09.001 Zhu, 2016, Recent advances for cyclodextrin-based materials in electrochemical sensing, Trends Anal. Chem., 80, 232, 10.1016/j.trac.2016.03.022 Bukkitgar, 2020, Ultrasonication and electrochemically-assisted synthesis of reduced graphene oxide nanosheets for electrochemical sensor applications, FlatChem, 23, 100183, 10.1016/j.flatc.2020.100183 Bukkitgar, 2017, Fabrication of a TiO2 and clay nanoparticle composite electrode as a sensor, Anal. Methods, 9, 4387, 10.1039/C7AY01068K Shetti, 2020, Poly(eriochrome black T) modified electrode for electrosensing of methdilazine, Mater. Sci. Semicond. Process., 120, 105261, 10.1016/j.mssp.2020.105261 Shetti, 2019, Nanostructured silver doped TiO2/CNTs hybrid as an efficient electrochemical sensor for detection of anti-inflammatory drug, cetirizine, Microchem. J., 150, 104124, 10.1016/j.microc.2019.104124 Shetti, 2019, Electro-sensing base for herbicide aclonifen at graphitic carbon nitride modified carbon electrode – water and soil sample analysis, Microchem. J., 149, 103976, 10.1016/j.microc.2019.103976 Shetti, 2019, A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode, Electroanalysis, 31, 1040, 10.1002/elan.201800775 Purohit, 2020, Biosensor nanoengineering: design, operation, and implementation for biomolecular analysis, Sens. Int., 1, 100040, 10.1016/j.sintl.2020.100040 Joshi, 2015, Enzyme-free and biocompatible nanocomposite based cholesterol sensor, Biochem. Eng. J., 102, 69, 10.1016/j.bej.2015.01.006 Raj, 2014, Cholesterol aided etching of tomatine gold nanoparticles: a non-enzymatic blood cholesterol monitor, Biosens. Bioelectron., 60, 191, 10.1016/j.bios.2014.03.062 Gilbert, 2017, Cyclodextrin-carbon nanotube composites for fluorescent detection of cholesterol, Chem. Phys. Lett., 687, 222, 10.1016/j.cplett.2017.09.024 Ji, 2015, Electrochemical sensor based on molecularly imprinted film at Au nanoparticles-carbon nanotubes modified electrode for determination of cholesterol, Biosens. Bioelectron., 66, 590, 10.1016/j.bios.2014.12.014 Jlidi, 2021, Temperature effect on structural, morphological and optical properties of 2D-MoS 2 layers: an experimental and theoretical study, Optik (Stuttg), 228 Liu, 2021, Folded MoS 2 bilayers with variable interfacial coupling revealed by Raman and Photoluminescence spectroscopy, Opt. Mater. (Amst)., 111, 110641, 10.1016/j.optmat.2020.110641 Ariyanta, 2021, A novel way of the synthesis of three-dimensional (3D) MoS 2 cauliflowers using allicin, Chem. Phys. Lett., 767, 138345, 10.1016/j.cplett.2021.138345 Gan, 2017, Two-dimensional MoS2: a promising building block for biosensors, Biosens. Bioelectron., 89, 56, 10.1016/j.bios.2016.03.042 Singh, 2018, 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects, Appl. Mater. Today, 13, 242, 10.1016/j.apmt.2018.09.003 Kukkar, 2016, Application of MoS2 modified screen-printed electrodes for highly sensitive detection of bovine serum albumin, Anal. Chim. Acta, 939, 101, 10.1016/j.aca.2016.08.010 Sinha, 2018, Jain, MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review, Trends Anal. Chem., 102, 75, 10.1016/j.trac.2018.01.008 Paulose, 2017, Nanostructured nickel oxide and its electrochemical behaviour—a brief review, Nano-Struct. Nano-Objects, 11, 102, 10.1016/j.nanoso.2017.07.003 Ariyanta, 2021, Novel NiO nanoparticles via phytosynthesis method: structural, morphological and optical properties, J. Mol. Struct., 1227, 129543, 10.1016/j.molstruc.2020.129543 Jung, 2018, Nonenzymatic flexible field-effect transistor based glucose sensor fabricated using NiO quantum dots modified ZnO nanorods, J. Colloid Interface Sci., 512, 21, 10.1016/j.jcis.2017.10.037 Giribabu, 2017, Glassy carbon electrode modified with poly(methyl orange) as an electrochemical platform for the determination of 4-nitrophenol at nanomolar levels, Curr. Appl. Phys., 17, 1114, 10.1016/j.cap.2017.04.016 Chiwunze, 2019, A highly dispersed multi-walled carbon nanotubes and poly(methyl orange) based electrochemical sensor for the determination of an anti-malarial drug: amodiaquine, Mater. Sci. Eng. C, 97, 285, 10.1016/j.msec.2018.12.018 Reddaiah, 2012, Electrochemical investigation of L-dopa and simultaneous resolution in the presence of uric acid and ascorbic acid at a poly (methyl orange) film coated electrode: a voltammetric study, J. Electroanal. Chem., 682, 164, 10.1016/j.jelechem.2012.07.027 Zhang, 2019, Facile synthesis and ammonia gas sensing properties of NiO nanoparticles decorated MoS2 nanosheets heterostructure, J. Mater. Sci. Mater. Electron., 30, 573, 10.1007/s10854-018-0323-3 Zribi, 2020, Exfoliated 2D-MoS2 nanosheets on carbon and gold screen printed electrodes for enzyme-free electrochemical sensing of tyrosine, Sens. Actuators B Chem., 303, 127229, 10.1016/j.snb.2019.127229 Siswana, 2006, Electrocatalysis of asulam on cobalt phthalocyanine modified multi-walled carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode, Electrochim. Acta, 52, 114, 10.1016/j.electacta.2006.03.090 Shetti, 2015, Electro-oxidation of captopril at a gold electrode and its determination in pharmaceuticals and human fluids, Anal. Methods, 7, 8673, 10.1039/C5AY01619C Bukkitgar, 2016, Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode, Mater. Sci. Eng. C, 65, 262, 10.1016/j.msec.2016.04.045 Jeevanandham, 2020, Nickel oxide decorated MoS2 nanosheet-based non-enzymatic sensor for the selective detection of glucose, RSC Adv., 10, 643, 10.1039/C9RA09318D Bhat, 2020, Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles, J. Iran. Chem. Soc., 17, 215, 10.1007/s13738-019-01767-3 P.A. Sheena, K.P. Priyanka, N.A. Sabu, B. Sabu, T. Varghese, Effect of calcination temperature on the structural and effect of calcination temperature on the structural and optical properties, Nanosyst. Phys. Chem. Math. 5 (2014) 441–449. Sulaiman, 2018, Spectroscopic, structural, and morphology of nickel oxide nanoparticles prepared using physalis angulata leaf extract, Mater. Sci. Forum., 917, 167, 10.4028/www.scientific.net/MSF.917.167 Palencia, 2018, Functional transformation of Fourier-transform mid-infrared spectrum for improving spectral specificity by simple algorithm based on wavelet-like functions, J. Adv. Res., 14, 53, 10.1016/j.jare.2018.05.009 N. Khaliq, M.A. Rasheed, M. Khan, M. Maqbool, M. Ahmad, S. Karim, A. Nisar, P. Schmuki, S.O. Cho, G. Ali, Voltage-switchable biosensor with gold nanoparticles on TiO 2 nanotubes decorated with CdS quantum dots for the detection of cholesterol and H 2 O 2, (2020). doi:10.1021/acsami.0c19979. Elgrishi, 2018, A practical beginner’s guide to cyclic voltammetry, J. Chem. Educ., 95, 197, 10.1021/acs.jchemed.7b00361 Carbone, 2017, Enhanced performances of sensors based on screen printed electrodes modified with nanosized NiO particles, Electrochim. Acta, 246, 580, 10.1016/j.electacta.2017.06.074 Das, 2018, Use of plant based analytes for the synthesis of NiO nanoparticles in catalyzing electrochemical H2O2 production, J. Electroanal. Chem., 823, 9, 10.1016/j.jelechem.2018.05.029 Shayani, 2019, Electrochemical study of adsorption and electrooxidation of 4, 4 ′ - biphenol on the glassy carbon electrode : determination of the orientation of adsorbed molecules, Monatshefte Für Chemie Chem. Mon. A. Ullah, J.E. Soc, A. Ullah, A. Rauf, A. Rana, R. Qureshi, N. Ashiq, H. Hussain, H. Kraatz, A. Badshah, A. Shah, pH dependent electrochemistry of anthracenediones at a glassy carbon electrode pH dependent electrochemistry of anthracenediones at a glassy carbon electrode, (2015). doi:10.1149/2.0881503jes. Grasso, 2019, A validated method for cholesterol determination in Turkey meat products using relative response factors, Foods, 8, 1, 10.3390/foods8120684 Lee, 2010, Nonenzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles, Biosens. Bioelectron., 26, 1353, 10.1016/j.bios.2010.07.048 Li, 2010, A nonenzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles, Biosens. Bioelectron., 25, 2356, 10.1016/j.bios.2010.03.036 Agnihotri, 2015, Non-enzymatic electrochemical detection of cholesterol using β-cyclodextrin functionalized graphene, Biosens. Bioelectron., 63, 212, 10.1016/j.bios.2014.07.037 Rengaraj, 2015, Electrodeposition of flower-like nickel oxide on CVD-grown graphene to develop an electrochemical non-enzymatic biosensor, J. Mater. Chem. B., 3, 6301, 10.1039/C5TB00908A