Poly (lactic acid) blends: Processing, properties and applications

International Journal of Biological Macromolecules - Tập 125 - Trang 307-360 - 2019
Mohammadreza Nofar1,2, Dilara Sacligil2, Pierre J. Carreau3, Musa R. Kamal4, Marie‐Claude Heuzey3
1Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
2Polymer Science and Technology Program, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
3Center for High Performance Polymer and Composite Systems (CREPEC), Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec, H3T 1J4, Canada
4CREPEC, Chemical Engineering Department, McGill University, Montreal, Quebec, H3A 2B2, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Garlotta, 2002, A literature review of poly (lactic acid), J. Poly. Environ., 9, 63, 10.1023/A:1020200822435

Sinclair, 1996, The case for polylactic acid as a commodity packaging plastic, J. Macromol. Sci., Part A: Pure Appl. Chem., 33, 33, 10.1080/10601329608010880

Grijpma, 1994, (Co)polymers of l-lactide, 2. Mechanical properties, Macromol. Chem. Phys., 195, 1649, 10.1002/macp.1994.021950516

Auras, 2014, An overview of polylactides as packaging materials, Macromol. Biosci., 4, 835, 10.1002/mabi.200400043

Drumright, 2000, Polylactic acid technology, Adv. Mater., 12, 1841, 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E

Nofar, 2014, Poly (lactic acid) foaming, Prog. Polym. Sci., 39, 1721, 10.1016/j.progpolymsci.2014.04.001

Gupta, 2007, Poly (lactic acid) fiber: an overview, Prog. Polym. Sci., 32, 455, 10.1016/j.progpolymsci.2007.01.005

Lunt, 1998, Large-scale production, properties and commercial applications of polylactic acid polymers, Polym. Degrad. Stab., 59, 145, 10.1016/S0141-3910(97)00148-1

Saini, 2016, Poly(lactic acid) blends in biomedical applications, Adv. Drug Deliv. Rev., 107, 47, 10.1016/j.addr.2016.06.014

Mikos, 1994, Wetting of poly(l-lactic acid) and poly(d,l-lactic-co-glycolic acid) foams for tissue culture, Biomaterials, 15, 55, 10.1016/0142-9612(94)90197-X

Jung, 2005, A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering, Biomaterials, 26, 6314, 10.1016/j.biomaterials.2005.04.007

Lim, 2008, Processing technologies for poly (lactic acid), Prog. Polym. Sci., 33, 820, 10.1016/j.progpolymsci.2008.05.004

Saeidlou, 2012, Poly (lactic acid) crystallization, Prog. Polym. Sci., 37, 1657, 10.1016/j.progpolymsci.2012.07.005

Rasal, 2010, Poly (lactic acid) modifications, Prog. Polym. Sci., 35, 338, 10.1016/j.progpolymsci.2009.12.003

Dorgan, 2005, Melt rheology of variable L-content poly(lactic acid), J. Rheol., 49, 607, 10.1122/1.1896957

Dorgan, 1999, Melt rheology of poly(lactic acid), entanglement and chainarchitecture effects, J. Rheol., 43, 1141, 10.1122/1.551041

Theryo, 2010, Tough polylactide graft copolymers, Macromolecules, 43, 7394, 10.1021/ma101155p

Grijpma, 1991, High molecular weight copolymers of l-lactide and ε-caprolactone as biodegradable elastomeric implant materials, Polym. Bull., 25, 327, 10.1007/BF00316902

Joziasse, 1994, Supertough poly(lactide)s, Polym. Bull., 33, 599, 10.1007/BF00296170

Grijpma, 1994, Rubber toughening of poly(lactide) by blending and block copolymerization, Polym. Eng. Sci., 34, 1674, 10.1002/pen.760342205

Fan, 2018, An injectable oxygen release system to augment cell survival and promote cardiac repair following myocardial infarction, Sci. Rep., 8, 1371, 10.1038/s41598-018-19906-w

Fan, 2017, Sustained release of a peptide-based matrix metalloproteinase-2 inhibitor to attenuate adverse cardiac remodeling and improve cardiac function following myocardial infarction, Biomacromolecules, 18, 2820, 10.1021/acs.biomac.7b00760

Macosko, 2000, Morphology development and control in immiscible polymer blends, Macromol. Symp., 149, 171, 10.1002/1521-3900(200001)149:1<171::AID-MASY171>3.0.CO;2-8

Favis, 1991, Polymer alloys and blends: recent advances, Can. J. Chem. Eng., 69, 619, 10.1002/cjce.5450690303

Yu, 2006, Polymer blends and composites from renewable resources, Prog. Polym. Sci., 31, 576, 10.1016/j.progpolymsci.2006.03.002

Sarazin, 2008, Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch, Polymer, 49, 599, 10.1016/j.polymer.2007.11.029

Liu, 2011, Interaction of microstructure and interfacial adhesion on impact performance of Polylactide (PLA) ternary blends, Macromolecules, 44, 1513, 10.1021/ma1026934

Arrighi, 2016, Miscibility criterion in polymer blend and its determination, 153

Favis, 1991, Factors influencing structure formation and phase size in an immiscible polymer blend of polycarbonate and polypropylene prepared by twin-screw extrusion, Polymer, 32, 1474, 10.1016/0032-3861(91)90429-M

Favis, 1987, The effect of viscosity ratio on the morphology of polypropylene/polycarbonate blends during processing, Polym. Eng. Sci., 27, 1591, 10.1002/pen.760272105

Scott, 1991, Model experiments concerning morphology development during the initial stages of polymer blending, Polym. Bull., 26, 341, 10.1007/BF00587979

Sundararaj, 1995, Milligrams to kilograms: an evaluation of mixers for reactive polymer blending, Polym. Eng. Sci., 35, 100, 10.1002/pen.760350113

Souza, 2002, Influence of coalescence and interfacial tension on the morphology of PP/HDPE compatibilized blends, Polymer, 43, 3959, 10.1016/S0032-3861(02)00223-9

Maani, 2012, Rheological and morphological properties of reactively compatibilized thermoplastic olefin (TPO) blends, J. Rheol., 56, 625, 10.1122/1.3700966

Dil, 2015, Localization of micro- and nano-silica particles in heterophase poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends, Polymer, 76, 295, 10.1016/j.polymer.2015.08.046

Huitric, 2007, Effect of reactive compatibilization on droplet coalescence in shear flow, J. Non-Newtonian Fluid Mech., 145, 139, 10.1016/j.jnnfm.2007.06.001

Puyvelde, 2008, Review on morphology development of immiscible blends in confined shear flow, Polymer, 49, 5363, 10.1016/j.polymer.2008.08.055

Wu, 1982

Nofar, 2016, Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow, Polymer, 98, 353, 10.1016/j.polymer.2016.06.044

Sumita, 1991, Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black, Polym. Bull., 25, 265, 10.1007/BF00310802

Taghizadeh, 2013, Carbon nanotubes in blends of polycaprolactone/thermoplastic starch, Carbohydr. Polym., 98, 189, 10.1016/j.carbpol.2013.05.024

Harkins, 1922, Films. The spreading of liquids and the spreading coefficient, J. Am. Chem. Soc., 44, 2665, 10.1021/ja01433a001

Harkins, 1941, A general thermodynamic theory of the spreading of liquids to form duplex films and of liquids or solids to form monolayers, J. Chem. Phys., 9, 552, 10.1063/1.1750953

Binks, 2002, Solid wettability from surface energy components: relevance to pickering emulsions, Langmuir, 18, 1270, 10.1021/la011420k

Ravati, 2013, Tunable morphologies for ternary blends with poly(butylene succinate): partial and complete wetting phenomena, Polymer, 54, 3271, 10.1016/j.polymer.2013.04.005

Zhang, 2007, Ultralow percolation thresholds in ternary cocontinuous polymer blends, Macromolecules, 40, 8817, 10.1021/ma0716480

Ravati, 2013, Interfacial coarsening of ternary polymer blends with partial and complete wetting structures, Polymer, 54, 6739, 10.1016/j.polymer.2013.10.009

Gruber, 1992

Ding, 2015, Rheology, thermal properties, and foaming behavior of high d-content polylactic acid/cellulose nanofiber composites, RSC Adv., 5, 91544, 10.1039/C5RA16901A

Ikada, 1987, Stereocomplex formation between enantiomeric poly(lactides), Macromolecules, 20, 904, 10.1021/ma00170a034

Okihara, 1991, Crystal structure of stereocomplex of poly(l-lactide) and poly(d-lactide), J. Macromol. Sci., Part B: Phys., 30, 119, 10.1080/00222349108245788

Tsuji, 2016, Poly(lactic acid) stereocomplexes: a decade of progress, Adv. Drug Deliv. Rev., 107, 97, 10.1016/j.addr.2016.04.017

Tsuji, 2007, Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications, Macromol. Biosci., 7, 10.1002/mabi.200700275

Fukushima, 2006, Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application, Polym. Int., 55, 626, 10.1002/pi.2010

Jing, 2016, A mini review on the functional biomaterials based on poly(lactic acid) Stereocomplex, Polym. Rev., 56, 262, 10.1080/15583724.2015.1111380

Tsuji, 2010, Water vapor permeability of poly(l-lactide)/poly(d-lactide) stereocomplexes, Macromol. Mater. Eng., 295, 709, 10.1002/mame.201000071

Fischer, 1973, Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions, Aktuelle Probleme Der Polymer-Physik IV Akt, Prob. Der. Polym. Phys., 980

Sarasua, 1998, Crystallization and melting behavior of polylactides, Macromolecules, 31, 3895, 10.1021/ma971545p

Sarasua, 2005, Stereoselective crystallization and specific interactions in polylactides, Macromolecules, 38, 8362, 10.1021/ma051266z

Sarasua, 2005, Crystallinity and mechanical properties of optically pure polylactides and their blends, Polym. Eng. Sci., 45, 745, 10.1002/pen.20331

Loomis, 1990, Polylactide stereocomplexes, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 31, 55

Tsuji, 1992, Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high-resolution solid-state carbon-13 NMR spectroscopy, Macromolecules, 25, 4114, 10.1021/ma00042a011

Wang, 2007, Stereocomplexation and morphology of enantiomeric poly(lactic acid)s with moderate-molecular-weight, J. Appl. Polym. Sci., 107, 1621, 10.1002/app.27260

Schmidt, 2001, Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide, J. Polym. Sci. B Polym. Phys., 39, 300, 10.1002/1099-0488(20010201)39:3<300::AID-POLB1002>3.0.CO;2-M

Yamane, 2003, Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid), Polymer, 44, 2569, 10.1016/S0032-3861(03)00092-2

Maillard, 2010, Differences between crystals obtained in PLLA-rich or PDLA-rich stereocomplex mixtures, Macromolecules, 43, 4006, 10.1021/ma902625p

Tsuji, 1999, Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films, Polymer, 40, 6699, 10.1016/S0032-3861(99)00004-X

Doi, 2002, Polyesters III: applications and commercial products

Srithep, 2015, Injection molding and characterization of polylactide stereocomplex, Polym. Degrad. Stab., 120, 290, 10.1016/j.polymdegradstab.2015.07.017

Saeidlou, 2012, Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes, Polymer, 53, 5816, 10.1016/j.polymer.2012.10.030

Saeidlou, 2014, Poly(lactic acid) stereocomplex formation: application to PLA rheological property modification, J. Appl. Polym. Sci., 131, 41073, 10.1002/app.41073

Wei, 2014, Stereocomplex crystallite network in asymmetric PLLA/PDLA blends: formation, structure, and confining effect on the crystallization rate of homocrystallites, Macromolecules, 47, 1439, 10.1021/ma402653a

Tsuji, 2003, Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending, Polymer, 44, 2891, 10.1016/S0032-3861(03)00175-7

Jacobsen, 1996, Filling of poly(lactic acid) with native starch, Polym. Eng. Sci., 36, 2799, 10.1002/pen.10680

Biresaw, 2001, Correlation between mechanical adhesion and interfacial properties of starch/biodegradable polyester blends, J. Polym. Phys. Part. B, 39, 920, 10.1002/polb.1067

Ke, 2003, Blending of poly(lactic acid) and starches containing varying amylose content, J. Appl. Polym. Sci., 89, 3639, 10.1002/app.12617

Ke, 2001, Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends, J. Appl. Polym. Sci., 81, 3069, 10.1002/app.1758

Ke, 2003, Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites, J. Appl. Polym. Sci., 89, 1203, 10.1002/app.12162

Zhang, 2004, Mechanical properties and crystallization behavior of poly(lactic acid) blended with dendritic hyperbranched polymer, Polym. Int., 53, 716, 10.1002/pi.1457

Park, 1999, Biodegradable polymer blends of poly (lactid acid) and starch, Korea Polym. J., 7, 93

Kozlowski, 2007, Biodegradable blends of poly(l-lactide) and starch, J. Appl. Polym. Sci., 105, 269, 10.1002/app.26088

Yu, 2015, Plasticizing effect of poly(ethylene glycol)s with different molecular weights in poly(lactic acid)/starch blends, J. Appl. Polym. Sci., 132, 41808, 10.1002/app.41808

Jariyasakoolroj, 2014, Silane modified starch for compatible reactive blend with poly(lactic acid), Carbohydr. Polym., 106, 255, 10.1016/j.carbpol.2014.02.018

Jun, 2000, Reactive blending of biodegradable polymers: PLA and starch, J. Polym. Environ., 8, 33, 10.1023/A:1010172112118

Xiong, 2013, Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil, Carbohydr. Polym., 92, 810, 10.1016/j.carbpol.2012.09.007

Wang, 2001, Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate, J. Appl. Polym. Sci., 82, 1761, 10.1002/app.2018

Wang, 2002, Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate, J. Appl. Polym. Sci., 84, 1257, 10.1002/app.10457

Wang, 2002, Effects of starch moisture on properties of wheat starch/poly(lactic acid) blend containing methylenediphenyl diisocyanate, J. Polym. Environ., 10, 133, 10.1023/A:1021139903549

Ke, 2003, Thermal and mechanical properties of poly(lactic acid)/starch/methylenediphenyl diisocyanate blending with triethyl citrate, J. Appl. Polym. Sci., 88, 2947, 10.1002/app.12112

Wang, 2003, Properties of poly(lactic acid) blends with various starches as affected by physical aging, J. Appl. Polym. Sci., 90, 3683, 10.1002/app.13001

Yu, 2010, Enhancing compatibilizer function by controlled distribution in hydrophobic polylactic acid/hydrophilic starch blends, J. Appl. Polym. Sci., 119, 2189, 10.1002/app.32949

Zhang, 2004, Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride, Biomacromolecules, 5, 1446, 10.1021/bm0400022

Zhang, 2004, Physical characterization of coupled poly(lactic acid)/starch/maleic anhydride blends plasticized by acetyl triethyl citrate, Macromol. Biosci., 4, 1053, 10.1002/mabi.200400076

Orozco, 2009, Preparation and characterization of poly(lactic acid)-g-maleic anhydridestarch blends, Macromol. Symp., 277, 69, 10.1002/masy.200950309

Wu, 2005, Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid - characterization and biodegradability assessment, Macromol. Biosci., 5, 352, 10.1002/mabi.200400159

Schwach, 2008, Biodegradable blends based on starch and poly(lactic acid): comparison of different strategies and estimate of compatibilization, J. Polym. Environ., 16, 286, 10.1007/s10924-008-0107-6

Liu, 2012, Grafting of glycidyl methacrylate onto poly(lactide) and properties of PLA/starch blends compatibilized by the grafted copolymer, J. Polym. Environ., 20, 810, 10.1007/s10924-012-0438-1

Xiong, 2013, The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride, Carbohydr. Polym., 95, 77, 10.1016/j.carbpol.2013.02.054

Xiong, 2013, Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends, Carbohydr. Polym., 94, 235, 10.1016/j.carbpol.2013.01.038

Li, 2016, Preparation and characterization of acorn starch/poly(lactic acid) composites modified with functionalized vegetable oil derivates, Carbohydr. Polym., 142, 250, 10.1016/j.carbpol.2016.01.031

Zhang, 2004, Mechanical and thermal properties of poly (lactic acid)/starch blends with dioctyl maleate, J. Appl. Polym. Sci., 94, 1697, 10.1002/app.21078

Gattin, 2002, Biodegradation study of a starch and poly (lacticacid) co-extruded material in liquid, composting and inert mineral media, Int. Biodeterior. Biodegrad., 50, 25, 10.1016/S0964-8305(02)00039-2

Yew, 2005, Water absorption and enzymatic degradation of poly (lactic acid)/rice starch composites, Polym. Degrad. Stab., 90, 488, 10.1016/j.polymdegradstab.2005.04.006

Zuo, 2015, Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites, Int. J. Biol. Macromol., 72, 391, 10.1016/j.ijbiomac.2014.08.038

Acioli-Moura, 2008, Thermal degradation and physical aging of poly(lactic acid) and its blends with starch, Polym. Eng. Sci., 48, 829, 10.1002/pen.21019

Ohkita, 2006, Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites, J. Appl. Polym. Sci., 100, 3009, 10.1002/app.23425

Lv, 2015, Effect of annealing on the thermal properties of poly (lactic acid)/starch blends, Int. J. Biol. Macromol., 74, 297, 10.1016/j.ijbiomac.2014.12.022

Réti, 2008, Flammability properties of intumescent PLA including starch and lignin, Polym. Adv. Technol., 19, 628, 10.1002/pat.1130

Wang, 2011, Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites, Ind. Eng. Chem. Res., 50, 713, 10.1021/ie1017157

Shen, 2013, Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal, Bioresour. Technol., 131, 33, 10.1016/j.biortech.2012.12.169

Hwang, 2013, Migration of α-tocopherol and resveratrol from poly(l-lactic acid)/starch blends films into ethanol, J. Food Eng., 116, 814, 10.1016/j.jfoodeng.2013.01.032

Sanyang, 2016, Development and characterization of sugar palm starch and poly(lactic acid) bilayer films, Carbohydr. Polym., 146, 36, 10.1016/j.carbpol.2016.03.051

Zhang, 2013, Novel toughening mechanism for polylactic acid (PLA)/starch blends with layer-like microstructure via pressure-induced flow (PIF) processing, Mater. Lett., 98, 238, 10.1016/j.matlet.2012.12.019

Bolay, 2012, How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer – Co-grinding enhances use properties of renewable PLA–starch composites, Chem. Eng. Process. Process Intensif., 56, 1, 10.1016/j.cep.2012.03.005

Wuk Park, 2000, Biodegradable polymer blends of poly (l-lactic acid) and gelatinized starch, Polym. Eng. Sci., 40, 2539, 10.1002/pen.11384

Shin, 2007, Morphology and rheology on the blends of PLA/CMPS, Macromol. Res., 15, 291, 10.1007/BF03218790

Chapleau, 2007, Biaxial orientation of polylactide/thermoplastic starch blends, Int. Polym. Process., 22, 412, 10.3139/217.2070

Huneault, 2007, Morphology and properties of compatibilized polylactide/thermoplastic starch blends, Polymer, 48, 270, 10.1016/j.polymer.2006.11.023

Wang, 2007, Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion, Polym. Int., 56, 1440, 10.1002/pi.2302

Ren, 2009, Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate), Carbohydr. Polym., 77, 576, 10.1016/j.carbpol.2009.01.024

Leadprathom, 2010, Compatibilized polylactic acid/thermoplastic starch by reactive blend, J. Met. Mater. Miner., 20, 87

Yu, 2007, Effect of compatibilizer distribution on the blends of starch/biodegradable polyesters, J. Appl. Polym. Sci., 103, 812, 10.1002/app.25184

Ning, 2008, Preparation and characterization of compatible thermoplastic dry starch/poly (lactic acid), Polym. Compos., 29, 551, 10.1002/pc.20399

Wang, 2008, Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends, Carbohydr. Polym., 71, 109, 10.1016/j.carbpol.2007.05.025

Yang, 2015, Preparation and characterization of thermoplastic starches and their blends with poly (lactic acid), Int. J. Biol. Macromol., 77, 273, 10.1016/j.ijbiomac.2015.03.053

Akrami, 2016, A new approach in compatibilization of the poly (lactic acid)/thermoplastic starch (PLA/TPS) blends, Carbohydr. Polym., 144, 254, 10.1016/j.carbpol.2016.02.035

Gao, 2011, Mechanical, thermal, and biodegradability properties of PLA/modified starch blends, Polym. Compos., 32, 2093, 10.1002/pc.21241

Shin, 2011, Thermal, morphological, and mechanical properties of biobased and biodegradable blends of poly (lactic acid) and chemically modified thermoplastic starch, Polym. Eng. Sci., 51, 826, 10.1002/pen.21896

Wang, 2007, Influence of citric acid on the properties of glycerol-plasticized dry starch (DTPS) and DTPS/poly (lactic acid) blends, Starch-Starke, 59, 409, 10.1002/star.200700617

Ferri, 2016, The effect of maleinized linseed oil (MLO) on mechanical performance of poly (lactic acid)-thermoplastic starch (PLA-TPS) blends, Carbohydr. Polym., 147, 60, 10.1016/j.carbpol.2016.03.082

Yokesahachart, 2011, Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly (lactic acid), Carbohydr. Polym., 83, 22, 10.1016/j.carbpol.2010.07.020

Shirai, 2015, Adipate and citrate esters as plasticizers for poly (lactic acid)/thermoplastic starch sheets, J. Polym. Environ., 23, 54, 10.1007/s10924-014-0680-9

Li, 2011, Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends, J. Appl. Polym. Sci., 119, 2439, 10.1002/app.32956

Li, 2011, Effect of chain extension on the properties of PLA/TPS blends, J. Appl. Polym. Sci., 122, 134, 10.1002/app.33981

Wootthikanokkhan, 2012, Effect of blending conditions on mechanical, thermal, and rheological properties of plasticized poly (lactic acid)/maleated thermoplastic starch blends, J. Appl. Polym. Sci., 124, 1012, 10.1002/app.35142

Phetwarotai, 2013, Biodegradation of polylactide and gelatinized starch blend films under controlled soil burial conditions, J. Polym. Environ., 21, 95, 10.1007/s10924-012-0530-6

Thunga, 2014, Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers, Carbon, 68, 159, 10.1016/j.carbon.2013.10.075

Wang, 2015, Low cost carbon fibers from bio-renewable lignin/poly (lactic acid) (PLA) blends, Compos. Sci. Technol., 119, 20, 10.1016/j.compscitech.2015.09.021

Gordobil, 2014, Physicochemical properties of PLA lignin blends, Polym. Degrad. Stab., 108, 330, 10.1016/j.polymdegradstab.2014.01.002

Gordobil, 2015, Kraft lignin as filler in PLA to improve ductility and thermal properties, Ind. Crop. Prod., 72, 46, 10.1016/j.indcrop.2015.01.055

Anwer, 2015, Comparison of the thermal, dynamic mechanical and morphological properties of PLA-Lignin & PLA-Tannin particulate green composites, Compos. Part B, 82, 92, 10.1016/j.compositesb.2015.08.028

Spiridon, 2015, Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering, Compos. Part B, 69, 342, 10.1016/j.compositesb.2014.10.006

Singla, 2016, Crystallization, morphological, and mechanical response of poly (lactic acid)/lignin-based biodegradable composites, polymer-plastics, Technol. Eng., 55, 475

Kim, 2014, Effect of alkyl-chain-modified lignin in the PLA matrix, Fibers Polym., 15, 2458, 10.1007/s12221-014-2458-z

Bugnicourt, 2014, Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging, Express Polym Lett, 8, 791, 10.3144/expresspolymlett.2014.82

Zhao, 2012, Phase morphology, physical properties, and biodegradation behavior of novel PLA/PHBHHx blends, J Biomed Mater Res B Appl Biomater, 100, 23, 10.1002/jbm.b.31915

Abdelwahab, 2012, Thermal, mechanical and morphological characterization of plasticized PLA/PHB blends, Polym. Degrad. Stab., 97, 1822, 10.1016/j.polymdegradstab.2012.05.036

Ferreira, 2002, Films of PLLA/PHBV: thermal, morphological, and mechanical characterization, J. Appl. Polym. Sci., 86, 2898, 10.1002/app.11334

Richards, 2008, Biodegradable composite foams of PLA and PHBV using subcritical CO2, J. Polym. Environ., 16, 258, 10.1007/s10924-008-0110-y

Blümm, 1995, Miscibility, crystallization, and melting of poly(3-hydroxybutyrate)/poly(l-lactide blends), Polymer, 36, 4077, 10.1016/0032-3861(95)90987-D

Koyama, 1997, Miscibility of binary blends of poly[(R)-3-ydroxybutyric acid] and poly[(S)-Iactic acid], Polymer, 38, 1589, 10.1016/S0032-3861(96)00685-4

Zhang, 2006, Crystallization behaviors of poly(3-hydroxybutyrate) and poly(l-lactic acid) in their immiscible and miscible blends, J. Phys. Chem., 110, 24463, 10.1021/jp065233c

Ohkoshia, 2000, Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate], Polymer, 41, 5985, 10.1016/S0032-3861(99)00781-8

Zhang, 1996, Miscibility, crystallization, and morphology of poly(β-hydroxybutyrate)/poly(d,l-lactide) blends, Polymer, 37, 235, 10.1016/0032-3861(96)81093-7

Kikkawa, 2006, Phase structure and enzymatic degradation of poly(L-lactide)/atactic poly(3-hydroxybutyrate) blends: an atomic force microscopy study, Biomacromolecules, 7, 1921, 10.1021/bm0600163

Kikkawa, 2009, Effect of phase structure on enzymatic degradation in poly(l-lactide)/atactic poly(3-hydroxybutyrate) blends with different miscibility, Biomacromolecules, 10, 1013, 10.1021/bm900117j

Bonartsev, 2012, Hydrolytic degradation of poly(3-hydroxybutyrate), polylactide and their derivatives: kinetics, crystallinity, and surface morphology, Mol. Cryst. Liq. Cryst., 556, 288, 10.1080/15421406.2012.635982

Zhang, 2011, Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties, Adv. Polym. Technol., 30, 67, 10.1002/adv.20235

Bartczak, 2013, Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate)–morphology and properties, Eur. Polym. J., 49, 3630, 10.1016/j.eurpolymj.2013.07.033

Musioł, 2016, (Bio)degradable polymers as a potential material for food packaging: studies on the (bio)degradation process of PLA/(R,S)-PHB rigid foils under industrial composting conditions, Eur. Food Res. Technol., 242, 815, 10.1007/s00217-015-2611-y

Dong, 2013, Effect of partial crosslinking on morphology and properties of the poly(b-hydroxybutyrate)/poly(d,l-lactic acid) blends, Polym. Degrad. Stab., 98, 1549, 10.1016/j.polymdegradstab.2013.06.033

Armentano, 2015, Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems, Express Polym Lett, 9, 583, 10.3144/expresspolymlett.2015.55

Armentano, 2015, Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems, Express Polym Lett, 9, 583, 10.3144/expresspolymlett.2015.55

Arrieta, 2014, Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications, Eur. Polym. J., 50, 255, 10.1016/j.eurpolymj.2013.11.009

Arrieta, 2014, Disintegrability under composting conditions of plasticized PLA/PHB blends, Polym. Degrad. Stab., 108, 307, 10.1016/j.polymdegradstab.2014.01.034

Arrieta, 2014, Plasticized poly(lactic acid)−poly(hydroxybutyrate) (PLA−PHB) blends incorporated with catechin intended for active food-packaging applications, J. Agric. Food Chem., 62, 10170, 10.1021/jf5029812

Arrieta, 2015, Development of flexible materials based on plasticized electrospun PLA–PHB blends: structural, thermal, mechanical and disintegration properties, Eur. Polym. J., 73, 433, 10.1016/j.eurpolymj.2015.10.036

Nicosia, 2015, Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid, Sep. Purif. Technol., 154, 154, 10.1016/j.seppur.2015.09.037

Han, 2012, Morphology and properties of biodegradable and biosourced polylactide blends with poly(3-hydroxybutyrate-co-4-hydroxybutyrate), Polym. Compos., 33, 850, 10.1002/pc.22213

Weng, 2013, Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments, Polym. Test., 32, 60, 10.1016/j.polymertesting.2012.09.014

Li, 2015, Non-isothermal crystallization of P(3HB-co-4HB)/PLA blends crystallization kinetic, melting behavior and crystal morphology, J. Therm. Anal. Calorim., 122, 817, 10.1007/s10973-015-4824-5

Iannace, 1994, Poly(3-hydroxybutyrate)-co-(3-hydroxyvalerate)/poly-l-lactide blends: thermal and mechanical properties, J. Appl. Polym. Sci., 54, 1525, 10.1002/app.1994.070541017

Iannace, 1995, Effect of degradation on the mechanical properties of multiphase polymer blends: PHBV/PLLA, J. Macromol. Sci. A, 32, 881, 10.1080/10601329508010301

Zembouai, 2014, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends: thermal stability, flammability and thermo-mechanical behavior, J. Polym. Environ., 22, 131, 10.1007/s10924-013-0626-7

Liu, 2015, Blends of polylactide and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with low content of hydroxyvalerate unit: morphology, structure, and property, J. Appl. Polym. Sci., 132, 42689, 10.1002/app.42689

Nanda, 2011, The Effects of Process Engineering on the Performance of PLA and PHBV Blends, Macromol. Mater. Eng., 296, 719, 10.1002/mame.201000417

Gerard, 2012, Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends, Eur. Polym. J., 48, 1110, 10.1016/j.eurpolymj.2012.03.015

Modi, 2012, Miscibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molecular weight poly(lactic acid) blends determined by thermal analysis, J. Appl. Polym. Sci., 124, 3074, 10.1002/app.35343

Boufarguine, 2013, PLA/PHBV films with improved mechanical and gas barrier properties, Macromol. Mater. Eng., 298, 1065, 10.1002/mame.201200285

Ma, 2013, Toughening of poly (lactic acid) by poly (b-hydroxybutyrate-co-b-hydroxyvalerate) with high b-hydroxyvalerate content, Eur. Polym. J., 49, 1523, 10.1016/j.eurpolymj.2013.01.016

Zembouai, 2013, A study of morphological, thermal, rheological and barrier properties of Poly(3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing, Polym. Test., 32, 842, 10.1016/j.polymertesting.2013.04.004

Yang, 2016, Transesterification induced mechanical properties enhancement of PLLA/PHBV bio-alloy, Polymer, 83, 230, 10.1016/j.polymer.2015.12.025

Gonzalez-Ausejo, 2017, Assessing the thermoformability of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (acid lactic) blends compatibilized with diisocyanates, Polym. Test., 62, 235, 10.1016/j.polymertesting.2017.06.026

Gonzalez-Ausejo, 2017, Assessing the thermoformability of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (acid lactic) blends compatibilized with diisocyanates, Polym. Test., 62, 235, 10.1016/j.polymertesting.2017.06.026

Gonzalez-Ausejo, 2017, Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)–poly(lactic acid) blends with diisocyanates, J. Appl. Polym. Sci., 134, 10.1002/app.44806

Qiang, 2018, Facile fabrication of 100% bio-based and degradable ternary cellulose/PHBV/PLA composite, Materials, 11, 330, 10.3390/ma11020330

He, 2014, Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures, J. Mater. Sci. Mater. Med., 25, 561, 10.1007/s10856-013-5073-4

Chang, 2016, Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: fabrication and characterization, Mater. Sci. Eng. C, 61, 396, 10.1016/j.msec.2015.12.074

Wagner, 2014, Analysis of porous electrospun fibers from poly(l-lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends, ACS Sustain. Chem. Eng., 2, 1976, 10.1021/sc5000495

Li, 2015, Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers, Polymer, 68, 183, 10.1016/j.polymer.2015.05.024

Rasal, 2009, Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization, J. Biomed. Mater. Res. A, 88, 1079, 10.1002/jbm.a.32009

Woodruff, 2010, The return of a forgotten polymer—polycaprolactone in the 21st century, Prog. Polym. Sci., 35, 1217, 10.1016/j.progpolymsci.2010.04.002

Kweon, 2003, A novel degradable polycaprolactone networks for tissue engineering, Biomaterials, 24, 801, 10.1016/S0142-9612(02)00370-8

Tsuji, 1996, Blends of aliphatic polyesters. I. Physical properties and morphologies of solution-cast blends from poly(dl-lactide) and poly(E-caprolactone), J. Appl. Polym. Sci., 60, 2367, 10.1002/(SICI)1097-4628(19960627)60:13<2367::AID-APP8>3.0.CO;2-C

Tsuji, 1998, Blends of aliphatic polyesters. II. Hydrolysis of solution-cast blends from poly(l-lactide) and poly(Ε-caprolactone) in phosphate-buffered solution, J. Appl. Polym. Sci., 67, 405, 10.1002/(SICI)1097-4628(19980118)67:3<405::AID-APP3>3.0.CO;2-Q

Fukushima, 2013, Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend, Eur. Polym. J., 49, 706, 10.1016/j.eurpolymj.2012.12.011

Liu, 2000, Selective enzymatic degradations of poly(l-lactide) and poly(ε-caprolactone) blend films, Biomacromolecules, 1, 350, 10.1021/bm000046k

Cai, 2002, In vitro study on the drug release behavior from polylactide-based blend matrices, Polym. Adv. Technol., 13, 534, 10.1002/pat.222

Li, 2003, Lipase-catalyzed biodegradation of poly(ε-caprolactone) blended with various polylactide-based polymers, Biomacromolecules, 4, 372, 10.1021/bm025748j

Sivalingam, 2004, Enzymatic and thermal degradation of poly(ε-caprolactone), poly(d,l-lactide), and their blends, Ind. Eng. Chem. Res., 43, 7702, 10.1021/ie049589r

Sivalingam, 2004, Thermal degradation of binary physical mixtures and copolymers of poly(3-caprolactone), poly(d,l-lactide), poly(glycolide), Polym. Degrad. Stab., 84, 393, 10.1016/j.polymdegradstab.2003.12.008

Gaona, 2012, Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction, Polym. Degrad. Stab., 97, 1621, 10.1016/j.polymdegradstab.2012.06.031

Vieira, 2011, Mechanical study of PLA–PCL fibers during in vitro degradation, J. Mech. Behav. Med. Mater., 4, 451

Kim, 2000, Effect of P(lLA-co-?CL) on the compatibility and crystallization behavior of PCL/PLLA blends, J. Appl. Polym. Sci., 77, 226, 10.1002/(SICI)1097-4628(20000705)77:1<226::AID-APP29>3.0.CO;2-8

Todo, 2007, Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends, Eng. Fract. Mech., 74, 1872, 10.1016/j.engfracmech.2006.05.021

Simões, 2009, Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends, J. Appl. Polym. Sci., 112, 345, 10.1002/app.29425

Noroozi, 2012, Thermorheological properties of poly (ε-caprolactone)/polylactide blends, Polym. Eng. Sci., 52, 2348, 10.1002/pen.23186

Sakai, 2009, Nucleation enhancement effect in poly(l-lactide) (PLLA)/poly(ϵ-caprolactone) (PCL) blend induced by locally activated chain mobility resulting from limited miscibility, Macromolecules, 42, 8335, 10.1021/ma901547a

Cock, 2013, Thermal, rheological and microstructural characterisation of commercial biodegradable polyesters, Polym. Test., 32, 716, 10.1016/j.polymertesting.2013.03.015

Botlhoko, 2018, A new insight into morphological, thermal, and mechanical properties of melt-processed polylactide/poly(ε-caprolactone) blends, Polym. Degrad. Stab., 154, 84, 10.1016/j.polymdegradstab.2018.05.025

Newman, 2009, Molecular mobilities in biodegradable poly(dl-lactide)/poly(ε-caprolactone) blends, Macromolecules, 42, 5219, 10.1021/ma9007303

Chen, 2003, Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials, 24, 1167, 10.1016/S0142-9612(02)00466-0

López-Rodríguez, 2006, Crystallization, morphology, and mechanical behavior of polylactide/poly(ɛ-caprolactone) blends, Polym. Eng. Sci., 46, 1299, 10.1002/pen.20609

Urquijo, 2015, Melt processed PLA/PCL blends: effect of processing method on phase structure, morphology, and mechanical properties, J. Appl. Polym. Sci., 132, 10.1002/app.42641

Na, 2002, Compatibilization effect of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(ε-caprolactone) blends, Biomacromolecules, 3, 1179, 10.1021/bm020050r

Vilay, 2010, Improvement of microstructures and properties of biodegradable PLLA and PCL blends compatibilized with a triblock copolymer, Mater. Sci. Eng. A, 527, 6930, 10.1016/j.msea.2010.07.079

Gardella, 2014, PLA maleation: an easy and effective method to modify the properties of PLA/PCL immiscible blends, Colloid Polym. Sci., 292, 2391, 10.1007/s00396-014-3328-3

Harada, 2008, Reactive compatibilization of biodegradable poly(lactic acid)/poly(ɛ-caprolactone) blends with reactive processing agents, Polym. Eng. Sci., 48, 1359, 10.1002/pen.21088

Tuba, 2011, Characterization of reactively compatibilized poly(d,l-lactide)/poly(ε-caprolactone) biodegradable blends by essential work of fracture method, Eng. Fract. Mech., 78, 3123, 10.1016/j.engfracmech.2011.09.010

Takayama, 2006, Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition, J. Mater. Sci., 41, 4989, 10.1007/s10853-006-0137-1

Wang, 1998, Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone), Polym. Degrad. Stab., 59, 161, 10.1016/S0141-3910(97)00196-1

Semba, 2006, The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends, J. Appl. Polym. Sci., 101, 1816, 10.1002/app.23589

Bai, 2012, Tailoring impact toughness of poly(l-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix, Appl. Mater. Interfaces, 4, 897, 10.1021/am201564f

Shin, 2013, Compatibilization of immiscible poly(lactic acid)/poly(ε-caprolactone) blend through electron-beam irradiation with the addition of a compatibilizing agent, Radiat. Phys. Chem., 83, 98, 10.1016/j.radphyschem.2012.10.001

Monticelli, 2014, Silsesquioxanes: novel compatibilizing agents for tuning the microstructure and properties of PLA/PCL immiscible blends, Eur. Polym. J., 58, 69, 10.1016/j.eurpolymj.2014.06.021

Al-Mulla, 2013, Effect of epoxidized palm oil on the mechanical and morphological properties of a PLA–PCL blend, Res. Chem. Intermed., 40, 689, 10.1007/s11164-012-0994-y

Wu, 2008, Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend, Eur. Polym. J., 44, 2171, 10.1016/j.eurpolymj.2008.04.023

Palierne, 1990, Linear rheology of viscoelastic emulsions with interfacial tension, Rheol. Acta, 29, 204, 10.1007/BF01331356

Zhang, 2009, Effect of steady shear on the morphology of biodegradable poly(ϵ-caprolactone)/polylactide blend, Polym. Eng. Sci., 49, 2293, 10.1002/pen.21456

Aslan, 2000, Poly(d,l-lactic acid)/poly (ε-caprolactone) blend membranes: preparation and morphological characterization, J. Mater. Sci., 35, 1615, 10.1023/A:1004787326273

Calandrelli, 2008, Compatibilized polymer blends based on PDLLA and PCL for application in bioartificial liver, Biomacromolecules, 9, 1527, 10.1021/bm7013087

Lebourg, 2008, Porous membranes of PLLA–PCL blend for tissue engineering applications, Eur. Polym. J., 44, 2207, 10.1016/j.eurpolymj.2008.04.033

Sun, 2009, In vitroandin vivotesting of novel ultrathin PCL and PCL/PLA blend films as peripheral nerve conduit, J. Biomed. Mater. Res. A, 9999A, 10.1002/jbm.a.32681

Huang, 2017, A novel route to the generation of porous scaffold based on the phase morphology control of co-continuous poly(ε-caprolactone)/polylactide blend in supercritical CO2, Polymer, 118, 163, 10.1016/j.polymer.2017.04.065

Jain, 2010, A new biodegradable flexible composite sheet from poly(lactic acid)/poly(ε-caprolactone) blends and micro-talc, Macromol. Mater. Eng., 295, 750, 10.1002/mame.201000063

Peponi, 2018, Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite, Polym. Degrad. Stab., 151, 36, 10.1016/j.polymdegradstab.2018.02.019

Jiang, 2006, Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends, Biomacromolecules, 7, 199, 10.1021/bm050581q

Nofar, 2017, Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies, Eur. Polym. J., 90, 231, 10.1016/j.eurpolymj.2017.03.031

Deng, 2018, Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology, J. Polym. Environ., 26, 3802, 10.1007/s10924-018-1256-x

Lee, 2007, Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate), Macromol. Res., 15, 44, 10.1007/BF03218751

Coltelli, 2008, Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization, J. Appl. Polym. Sci., 110, 1250, 10.1002/app.28512

Al-Itry, 2012, Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy, Polym. Degrad. Stab., 97, 1898, 10.1016/j.polymdegradstab.2012.06.028

Al-Itry, 2014, Reactive extrusion of PLA, PBAT with a multi-functional epoxide: physico-chemical and rheological properties, Eur. Polym. J., 58, 90, 10.1016/j.eurpolymj.2014.06.013

Al-Itry, 2015, Effect of the simultaneous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state, Eur. Polym. J., 68, 288, 10.1016/j.eurpolymj.2015.05.001

Arruda, 2015, Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends, Polym. Test., 43, 27, 10.1016/j.polymertesting.2015.02.005

Dong, 2013, Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/poly(butylene adipate-co-terephthalate) blends, Int. J. Mol. Sci., 14, 20189, 10.3390/ijms141020189

Dong, 2013, Influence of phthalic anhydride and bioxazoline on the mechanical and morphological properties of biodegradable poly(lactic acid)/poly[(butylene adipate)-co-terephthalate] blends, Polym. Int., 62, 1783, 10.1002/pi.4568

Zhang, 2008, Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent, J. Mater. Sci., 44, 250, 10.1007/s10853-008-3049-4

Nishida, 2015, Improvement of dynamic tensile properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) polymer alloys using a crosslinking agent and observation of fracture surfaces, Int. J. Impact Eng., 79, 117, 10.1016/j.ijimpeng.2014.11.010

Coltelli, 2010, The effect of free radical reactions on structure and properties of poly(lactic acid) (PLA) based blends, Polym. Degrad. Stab., 95, 332, 10.1016/j.polymdegradstab.2009.11.015

Zhang, 2012, Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with epoxy-functional styrene acrylic copolymer as reactive agent, J. Polym. Environ., 21, 286, 10.1007/s10924-012-0448-z

Ma, 2014, In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator, Polym. Degrad. Stab., 102, 145, 10.1016/j.polymdegradstab.2014.01.025

Sirisinha, 2011, Melt characteristics, mechanical, and thermal properties of blown film from modified blends of poly(butylene adipate-co-terephthalate) and poly(lactide), J. Appl. Polym. Sci., 10.1002/app.35604

Lins, 2015, Phosphonium ionic liquids as new compatibilizing agents of biopolymer blends composed of poly(butylene-adipate-co-terephtalate)/poly(lactic acid) (PBAT/PLA), RSC Adv., 5, 59082, 10.1039/C5RA10241C

Wu, 2017, Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends, Mater. Lett., 192, 17, 10.1016/j.matlet.2017.01.063

Gu, 2008, Melt rheology of polylactide/poly(butylene adipate-co-terephthalate) blends, Carbohydr. Polym., 74, 79, 10.1016/j.carbpol.2008.01.017

Li, 2011, Dynamic rheological behavior and morphology of polylactide/poly(butylenes adipate-co-terephthalate) blends with various composition ratios, Adv. Polym. Technol., 30, 150, 10.1002/adv.20212

Nofar, 2015, Interfacial and rheological properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow, J. Rheol., 59, 317, 10.1122/1.4905714

Nofar, 2016, Coalescence in PLA-PBAT blends under shear flow: effects of blend preparation and PLA molecular weight, J. Rheol., 60, 637, 10.1122/1.4953446

Dil, 2015, Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends, Polymer, 68, 202, 10.1016/j.polymer.2015.05.012

Xiao, 2009, Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends, Appl. Polym. Sci., 112, 3754, 10.1002/app.29800

Yeh, 2009, Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends, J. Appl. Polym. Sci., 10.1002/app.30907

Quero, 2011, Isothermal cold-crystallization of PLA/PBAT blends with and without the addition of acetyl tributyl citrate, Macromol. Chem. Phys., 213, 36, 10.1002/macp.201100437

Wang, 2013, Isothermal crystallization and melting behaviors of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends compatibilized by transesterification, Polym.-Plast. Technol. Eng., 52, 718, 10.1080/03602559.2012.762671

Chiu, 2013, Heat treatment effects on the mechanical properties and morphologies of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends, Int. J. Police Sci. Manag., 2013, 1, 10.1155/2013/951696

Signori, 2009, Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing, Polym. Degrad. Stab., 94, 74, 10.1016/j.polymdegradstab.2008.10.004

Weng, 2013, Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions, Polym. Test., 32, 918, 10.1016/j.polymertesting.2013.05.001

Liewchirakorn, 2017, Practical approach in developing desirable peel-seal and clear lidding films based on poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends, Packag. Technol. Sci., 31, 296, 10.1002/pts.2321

Lee, 2005, Characterization and processing of biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate), Korea Aust. Rheol J., 17, 71

Pivsa-Art, 2014, Compression molding and melt-spinning of the blends of poly(lactic acid) and poly(butylene succinate-co-adipate), J. Appl. Polym. Sci., 132

Ojijo, 2012, Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate], ACS Appl. Mater. Interfaces, 4, 6690, 10.1021/am301842e

Wang, 2009, Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites, J. Appl. Polym. Sci., 113, 3095, 10.1002/app.30333

Eslami, 2013, Effect of a chain extender on the rheological and mechanical properties of biodegradable poly(lactic acid)/poly[(butylene succinate)-co-adipate] blends, J. Appl. Polym. Sci., 129, 2418, 10.1002/app.38449

Ojijo, 2015, Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization, Polymer, 80, 1, 10.1016/j.polymer.2015.10.038

Ojijo, 2013, Toughening of biodegradable polylactide/poly(butylene succinate-co-adipate) blends via in situ reactive compatibilization, ACS Appl. Mater. Interfaces, 5, 4266, 10.1021/am400482f

Gui, 2012, Morphology and melt rheology of biodegradable poly(lactic acid)/poly(butylene succinate adipate) blends: effect of blend compositions, Iran. Polym. J., 21, 81, 10.1007/s13726-011-0009-7

Eslami, 2012, Elongational rheology of biodegradable poly(lactic acid)/poly[(butylene succinate)-co-adipate] binary blends and poly(lactic acid)/poly[(butylene succinate)-co-adipate]/clay ternary nanocomposites, J. Appl. Polym. Sci., 127, 2290, 10.1002/app.37928

Deng, 2015, Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects, Eur. Polym. J., 71, 534, 10.1016/j.eurpolymj.2015.08.029

Park, 2002, Morphological changes during heating in poly(L-lactic acid)/poly(butylene succinate) blend systems as studied by synchrotron X-ray scattering, J. Polym. Sci. B Polym. Phys., 40, 1931, 10.1002/polb.10240

Park, 2002, Phase behavior and morphology in blends of poly(l-lactic acid) and poly(butylene succinate), J. Appl. Polym. Sci., 86, 647, 10.1002/app.10923

Bhatia, 2007, Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application, Korea Aust. Rheol. J., 19, 125

Yokohara, 2008, Structure and properties for biomass-based polyester blends of PLA and PBS, Eur. Polym. J., 44, 677, 10.1016/j.eurpolymj.2008.01.008

Xu, 2012, Relaxation behavior of poly(lactic acid)/poly(butylene succinate) blend and a new method for calculating its interfacial tension, J. Appl. Polym. Sci., 125, 10.1002/app.36910

Wu, 2012, Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend, Ind. Eng. Chem. Res., 51, 2290, 10.1021/ie2022288

Wang, 2009, Toughening modification of PLLA/PBS blends via in situ compatibilization, Polym. Eng. Sci., 49, 26, 10.1002/pen.21210

Shibata, 2006, Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly(butylene succinate), Polymer, 47, 3557, 10.1016/j.polymer.2006.03.065

Ji, 2013, Morphology, rheology, crystallization behavior, and mechanical properties of poly(lactic acid)/poly(butylene succinate)/dicumyl peroxide reactive blends, J. Appl. Polym. Sci., 131

Harada, 2007, Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent, J. Appl. Polym. Sci., 106, 1813, 10.1002/app.26717

Persenaire, 2014, Reactive compatibilization of poly(l-lactide)/poly(butylene succinate) blends through polyester maleation: from materials to properties, Polym. Int., 63, 1724, 10.1002/pi.4700

Li, 2013, Novel biodegradable polylactide/poly(butylene succinate) composites via cross-linking with methylene diphenyl diisocyanate, Polym.-Plast. Technol. Eng., 52, 1183, 10.1080/03602559.2013.798817

Zhang, 2018, Copolymer P(BS-co-LA) enhanced compatibility of PBS/PLA composite, J. Polym. Environ., 26, 3060, 10.1007/s10924-018-1180-0

Kun, 2012, Biocompatibility of a novel poly(butyl succinate) and polylactic acid blend, ASAIO J., 58, 262, 10.1097/MAT.0b013e31824709ee

Kimble, 2015, In vitro degradation effects on strength, stiffness, and creep of PLLA/PBS: a potential stent material, Int. J. Polym. Mater. Polym. Biomater., 64, 299, 10.1080/00914037.2014.945203

Kovalovs, 2016, Search for composition of nanoparticles containing poly (vinyl alcohol)/poly (vinyl acetate) blend composites having the highest value of the modulus of elasticity by the response surface methodology, 111

Gajria, 1996, Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate), Polymer, 37, 437, 10.1016/0032-3861(96)82913-2

Mahalik, 2006, Enzymatic degradation of poly(d,l-lactide) and its blends with poly(vinyl acetate), J. Appl. Polym. Sci., 101, 675, 10.1002/app.23817

Shuai, 2001, Miscibility and phase structure of binary blends of poly(l-lactide) and poly(vinyl alcohol), J. Appl. Polym. Sci., 81, 762, 10.1002/app.1493

Tsuji, 2001, Blends of aliphatic polyesters. IV. Morphology, swelling behavior, and surface and bulk properties of blends from hydrophobic poly(l-lactide) and hydrophilic poly(vinyl alcohol), J. Appl. Polym. Sci., 81, 2151, 10.1002/app.1651

Yeh, 2008, Study on the crystallization kinetic and characterization of poly(lactic acid) and poly(vinyl alcohol) blends, Polym.-Plast. Technol. Eng., 47, 1289, 10.1080/03602550802497958

Li, 2014, Thermoplastic PVA/PLA blends with improved processability and hydrophobicity, Ind. Eng. Chem. Res., 53, 17355, 10.1021/ie502531w

Tran, 2013, Melt spinning of biodegradable nanofibrillary structures from poly(lactic acid) and poly(vinyl alcohol) blends, Macromol. Mater. Eng., 299, 219, 10.1002/mame.201300125

Neppalli, 2013, Effect of electrospun ethylene vinyl alcohol copolymer (EVOH) fibres on the structure, morphology, and properties of poly(lactic acid) (PLA), Polymer, 54, 5909, 10.1016/j.polymer.2013.08.046

Lee, 2005, Reactive blending of poly (l-lactic acid) with poly(ethylene- co-vinyl alcohol), J. Appl. Polym. Sci., 98, 886, 10.1002/app.22193

Zhang, 2013, Improving transparency of incompatible polymer blends by reactive compatibilization, Mater. Lett., 92, 68, 10.1016/j.matlet.2012.10.060

Gui, 2012, Improving the barrier properties of poly(lactic acid) by blending with poly(ethylene-co-vinyl alcohol), J. Macromol. Sci., Phys., 52, 685, 10.1080/00222348.2012.720180

Wu, 2016, Characterization and properties of reactive poly (lactic acid)/ethylene–vinyl alcohol copolymer blends with chain-extender, J. Polym. Environ., 24, 129, 10.1007/s10924-016-0755-x

Ma, 2006, Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends, J. Polym. Sci. B Polym. Phys., 44, 94, 10.1002/polb.20669

Gao, 2012, An optical microscopy study on the phase structure of poly(l-lactide acid)/poly(propylene carbonate) blends, J. Phys. Chem. B, 116, 9832, 10.1021/jp3041378

Ning, 2008, Partially miscible poly(lactic acid)-blend-poly(propylene carbonate) filled with carbon black as conductive polymer composite, Polym. Int., 57, 1027, 10.1002/pi.2442

Yao, 2011, Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride, Express Polym Lett, 5, 937, 10.3144/expresspolymlett.2011.92

Gao, 2012, Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends, Express Polym Lett, 6, 860, 10.3144/expresspolymlett.2012.92

Chen, 2013, Study on the mechenical properties of PPC/PLA blends modified by POSS, Adv. Mater. Res., 741, 28, 10.4028/www.scientific.net/AMR.741.28

Zhou, 2016, Effects of catalytic transesterification and composition on the toughness of poly(lactic acid)/poly(propylene carbonate) blends, Ind. Eng. Chem. Res., 55, 5565, 10.1021/acs.iecr.6b00315

Zeng, 2009, Synthesis and properties of poly(ester urethane)s consisting of poly(l-lactic acid) and poly(ethylene succinate) segments, Ind. Eng. Chem. Res., 48, 1706, 10.1021/ie801391m

Lu, 2007, Fully biodegradable blends of poly(l-lactide) and poly(ethylene succinate): miscibility, crystallization, and mechanical properties, Polymer, 48, 4196, 10.1016/j.polymer.2007.05.035

Fan, 2011, The effect of poly(ethylene succinate) on mechanical properties of PLLA/PES blend prepared by melt-blending, J. Macromol. Sci., Part B: Phys., 50, 493, 10.1080/00222341003652260

Ramdhanie, 2006, Thermal and mechanical characterization of electrospun blends of poly(lactic acid) and poly(glycolic acid), Polym. J., 38, 1137, 10.1295/polymj.PJ2006062

You, 2005, In vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(l-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres, Polym. Degrad. Stab., 90, 441, 10.1016/j.polymdegradstab.2005.04.015

You, 2006, Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers, Mater. Lett., 60, 757, 10.1016/j.matlet.2005.10.007

Pandey, 2008, Synthesis of polylactic acid–polyglycolic acid blends using microwave radiation, J. Mech. Behav. Biomed. Mater., 1, 227, 10.1016/j.jmbbm.2007.12.001

Iwata, 2015, ChemInform abstract: biodegradable and bio-based polymers: future prospects of eco-friendly plastics, Angew. Chem. Int. Ed., 46, 3210, 10.1002/anie.201410770

Shen, 2012, Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics, Biofuels Bioprod. Biorefin., 6, 625, 10.1002/bbb.1368

Winnacker, 2016, Biobased polyamides: recent advances in basic and applied research, Macromol. Rapid Commun., 37, 1391, 10.1002/marc.201600181

Zhang, 2009, Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer, Polymer, 50, 1311, 10.1016/j.polymer.2009.01.032

Stoclet, 2011, Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11, Polymer, 52, 1417, 10.1016/j.polymer.2011.02.002

Patel, 2013, Biorenewable blends of polyamide-11 and polylactide, Polym. Eng. Sci., 54, 1523, 10.1002/pen.23692

Gug, 2016, Improvement of the mechanical behavior of bioplastic poly(lactic acid)/polyamide blends by reactive compatibilization, J. Appl. Polym. Sci., 133, 10.1002/app.43350

Zolali, 2016, Ultratough co-continuous PLA/PA11 by interfacially percolated poly(ether-b-amide), Macromolecules, 50, 264, 10.1021/acs.macromol.6b02310

Heshmati, 2017, Morphology development in poly (lactic acid)/polyamide11 biobased blends: chain mobility and interfacial interactions, Polymer, 120, 197, 10.1016/j.polymer.2017.05.056

Heshmati, 2017, High performance poly (lactic acid)/bio-polyamide11 through controlled chain mobility, Polymer, 123, 184, 10.1016/j.polymer.2017.07.009

Pai, 2013, Characterization and properties of reactive poly(lactic acid)/polyamide 610 biomass blends, J. Appl. Polym. Sci., 130, 2563, 10.1002/app.39473

Kakroodi, 2017, Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films, Chem. Eng. J., 308, 772, 10.1016/j.cej.2016.09.130

Ferrero, 2014, Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed, Polym. Compos., 36, 1378, 10.1002/pc.23042

Brito, 2016, Mechanical and morphological properties of PLA/BioPE blend compatibilized with E-GMA and EMA-GMA copolymers, Macromol. Symp., 367, 176, 10.1002/masy.201500158

Plastic Moulding CA

Wang, 2001, Polyethylene-poly(l-lactide) diblock copolymers: synthesis and compatibilization of poly(l-lactide)/polyethylene blends, J. Polym. Sci. A Polym. Chem., 39, 2755, 10.1002/pola.1254

Anderson, 2003, Toughening of polylactide by melt blending with linear low-density polyethylene, J. Appl. Polym. Sci., 89, 3757, 10.1002/app.12462

Anderson, 2004, The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends, Polymer, 45, 8809, 10.1016/j.polymer.2004.10.047

Kim, 2004, Compatibilization of immiscible poly(l-lactide) and low density polyethylene blends, Fiber Polym., 5, 270, 10.1007/BF02875524

Su, 2009, Phase structure of compatibilized poly(lactic acid)/linear low-density polyethylene blends, J. Macromol. Sci., Part B: Phys., 48, 823, 10.1080/00222340902956327

Singh, 2010, Mechanical properties and morphology of polylactide, linear low-density polyethylene, and their blends, J. Appl. Polym. Sci., 118, 496, 10.1002/app.32305

Singh, 2010, Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends, Polym. Bull., 66, 939, 10.1007/s00289-010-0367-x

Djellali, 2013, Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends, Iran. Polym. J., 22, 245, 10.1007/s13726-013-0126-6

Lai, 2013, Synergistic effects by compatibilization and annealing treatment of metallocene polyethylene/PLA blends, J. Appl. Polym. Sci., 130, 2399, 10.1002/app.39437

Zolali, 2018, Toughening of cocontinuous polylactide/polyethylene blends via an interfacially percolated intermediate phase, Macromolecules, 51, 3572, 10.1021/acs.macromol.8b00464

Thurber, 2014, Accelerating reactive compatibilization of PE/PLA blends by an interfacially localized catalyst, ACS Macro Lett., 4, 30, 10.1021/mz500770y

Lu, 2016, Morphology and properties of bio-based poly (lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites, Polym. Test., 54, 90, 10.1016/j.polymertesting.2016.06.025

Hamad, 2011, Melt rheology of poly(lactic acid)/low density polyethylene polymer blends, Adv. Chem. Eng. Sci., 01, 208, 10.4236/aces.2011.14030

Hamad, 2012, Poly(lactic acid)/low density polyethylene polymer blends: preparation and characterization, Asia Pac. J. Chem. Eng., 7, S310, 10.1002/apj.1649

Jiang, 2011, Rheological responses and morphology of polylactide/linear low density polyethylene blends produced by different mixing type, Polym.-Plast. Technol. Eng., 50, 1035, 10.1080/03602559.2011.557822

Balakrishnan, 2010, Mechanical, thermal, and morphological properties of Polylactic acid/linear low density polyethylene blends, J. Elastomers Plast., 42, 223, 10.1177/0095244310362403

Bee, 2014, Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends, Nucl. Instrum. Methods Phys. Res., Sect. B, 334, 18, 10.1016/j.nimb.2014.04.024

Omura, 2006, Thermal degradation behavior of poly(lactic acid) in a blend with polyethylene, Ind. Eng. Chem. Res., 45, 2949, 10.1021/ie051446x

Rezgui, 2010, Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, part 1: microstructural analysis and tensile behavior at constant true strain-rate, Polym. Eng. Sci., 51, 117, 10.1002/pen.21797

Rezgui, 2010, Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, part 2: creep characterization and modeling, Polym. Eng. Sci., 51, 126, 10.1002/pen.21796

Reddy, 2008, Polylactic acid/polypropylene polyblend fibers for better resistance to degradation, Polym. Degrad. Stab., 93, 233, 10.1016/j.polymdegradstab.2007.09.005

Kim, 2013, Miscibility and performance evaluation of natural-flour-filled PP/PBS and PP/PLA bio-composites, Fibers Polym., 14, 793, 10.1007/s12221-013-0793-0

Ploypetchara, 2014, Blend of polypropylene/poly(lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties, Energy Procedia, 56, 201, 10.1016/j.egypro.2014.07.150

Ying-Chen, 2010, Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber, Bioresour. Technol., 101, 7944, 10.1016/j.biortech.2010.05.007

Pivsa-Art, 2016, Effect of compatibilizer on PLA/PP blend for injection molding, Energy Procedia, 89, 353, 10.1016/j.egypro.2016.05.046

Yoo, 2010, Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends, Macromol. Res., 18, 583, 10.1007/s13233-010-0613-y

Lee, 2012, Effect of a hybrid compatibilizer on the mechanical properties and interfacial tension of a ternary blend with polypropylene, poly(lactic acid), and a toughening modifier, Polym. Compos., 33, 1154, 10.1002/pc.22244

Choudhary, 2011, Poly(l-lactide)/polypropylene blends: evaluation of mechanical, thermal, and morphological characteristics, J. Appl. Polym. Sci., 121, 3223, 10.1002/app.33866

Xu, 2015, Reactive compatibilization of polylactide/polypropylene blends, Ind. Eng. Chem. Res., 54, 6108, 10.1021/acs.iecr.5b00882

Lin, 2012, Polypropylene/poly (lactic acid) semibiocomposites modified with two kinds of intumescent flame retardants, Polym.-Plast. Technol. Eng., 51, 991, 10.1080/03602559.2012.680559

Biresaw, 2002, Interfacial tension of poly(lactic acid)/polystyrene blends, J. Polym. Sci. B Polym. Phys., 40, 2248, 10.1002/polb.10290

Sarazin, 2003, Morphology control in co-continuous poly(l-lactide)/polystyrene blends: a route towards highly structured and interconnected porosity in poly(l-lactide) materials, Biomacromolecules, 4, 1669, 10.1021/bm030034+

Yuan, 2004, Macroporous poly(l-lactide) of controlled pore size derived from the annealing of co-continuous polystyrene/poly(l-lactide) blends, Biomaterials, 25, 2161, 10.1016/j.biomaterials.2003.08.060

Leung, 2009, X-ray spectromicroscopy study of protein adsorption to a polystyrene−polylactide blend, Biomacromolecules, 10, 1838, 10.1021/bm900264w

Leung, 2009, Phase segregation in polystyrene−polylactide blends, Macromolecules, 42, 1679, 10.1021/ma802176b

Gu, 2018, Reactive compatibilization of poly(lactic acid)/polystyrene blends and its application to preparation of hierarchically porous poly(lactic acid), Polymer, 134, 104, 10.1016/j.polymer.2017.11.054

Biresaw, 2004, Compatibility and mechanical properties of blends of polystyrene with biodegradable polyesters, Compos. A: Appl. Sci. Manuf., 35, 313, 10.1016/j.compositesa.2003.09.020

Mohamed, 2007, Poly(lactic acid)/polystyrene bioblends characterized by thermogravimetric analysis, differential scanning calorimetry, and photoacoustic infrared spectroscopy, J. Appl. Polym. Sci., 106, 1689, 10.1002/app.26783

Zuza, 2008, Compatibilization through specific interactions and dynamic fragility in poly(d,l-lactide)/polystyrene blends, Macromol. Chem. Phys., 209, 2423, 10.1002/macp.200800443

Hamad, 2010, Rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend, Polym. Bull., 65, 509, 10.1007/s00289-010-0354-2

Hamad, 2010, Effect of recycling on rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend, J. Mater. Sci., 46, 3013, 10.1007/s10853-010-5179-8

Kaseem, 2016, Melt flow behavior and processability of polylactic acid/polystyrene (PLA/PS) polymer blends, J. Polym. Environ., 25, 994, 10.1007/s10924-016-0873-5

Li, 2009, Improvement in toughness of poly(l-lactide) (PLLA) through reactive blending with acrylonitrile–butadiene–styrene copolymer (ABS): morphology and properties, Eur. Polym. J., 45, 738, 10.1016/j.eurpolymj.2008.12.010

Jo, 2012, Effects of compatibilizers on the mechanical properties of ABS/PLA composites, J. Appl. Polym. Sci., 125, 10.1002/app.36732

Choe, 2014, Mechanical properties of acrylonitrile-butadiene-styrene copolymer/poly(l-lactic acid) blends and their composites, J. Appl. Polym. Sci., 131, 10.1002/app.40329

Dong, 2015, PLLA/ABS blends compatibilized by reactive comb polymers: double Tg depression and significantly improved toughness, ACS Sustain. Chem. Eng., 3, 2542, 10.1021/acssuschemeng.5b00740

Vadori, 2016, Sustainable biobased blends from the reactive extrusion of polylactide and acrylonitrile butadiene styrene, J. Appl. Polym. Sci., 133, 10.1002/app.43771

Vadori, 2017, Statistical optimization of compatibilized blends of poly(lactic acid) and acrylonitrile butadiene styrene, J. Appl. Polym. Sci., 134, 44516, 10.1002/app.44516

Wu, 2015, Toughening of poly(l-lactide) modified by a small amount of acrylonitrile−butadiene−styrene core-shell copolymer, J. Appl. Polym. Sci., 132, 42554, 10.1002/app.42554

Zhang, 2003, Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate), J. Polym. Sci. B Polym. Phys., 41, 23, 10.1002/polb.10353

Cossement, 2006, PLA-PMMA blends: a study by XPS and ToF-SIMS, Appl. Surf. Sci., 252, 6636, 10.1016/j.apsusc.2006.02.225

Gonzalez-Garzon, 2018, Properties and phase structure of melt-processed PLA/PMMA blend, J. Polym. Res., 25, 58, 10.1007/s10965-018-1438-1

Samuel, 2013, PLLA/PMMA blends: a shear-induced miscibility with tunable morphologies and properties?, Polymer, 54, 3931, 10.1016/j.polymer.2013.05.021

Samuel, 2014, Designing multiple-shape memory polymers with miscible polymer blends: evidence and origins of a triple-shape memory effect for miscible PLLA/PMMA blends, Macromolecules, 47, 6791, 10.1021/ma500846x

Samuel, 2013, Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): improved processability and thermomechanical properties of stereocomplexable polylactide-based materials, Appl. Mater. Interfaces, 5, 11797, 10.1021/am403443m

Bao, 2015, Polymorphism of a high-molecular-weight racemic poly(l-lactide)/poly(d-lactide) blend: effect of melt blending with poly(methyl methacrylate), RSC Adv., 5, 19058, 10.1039/C5RA00691K

Hao, 2015, Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends, Polymer, 80, 38, 10.1016/j.polymer.2015.10.037

Wu, 2015, Physical properties and crystallization behavior of poly(lactide)/poly(methyl methacrylate)/silica composites, J. Appl. Polym. Sci., 132, 42378, 10.1002/app.42378

Anakabe, 2016, The effect of the addition of poly(styrene-co-glycidyl methacrylate) copolymer on the properties of polylactide/poly(methyl methacrylate) blend, J. Appl. Polym. Sci., 133, 43935, 10.1002/app.43935

Imre, 2014, Interactions, structure and properties in poly(lactic acid)/thermoplastic polymer blends, Express Polym Lett, 8, 2, 10.3144/expresspolymlett.2014.2

Girija, 2005, Thermal degradation and mechanical properties of PET blends, Polym. Degrad. Stab., 90, 147, 10.1016/j.polymdegradstab.2005.03.003

Chen, 2009, Non-isothermal crystallization of PET/PLA blends, Thermochim. Acta, 492, 61, 10.1016/j.tca.2009.04.023

Fu, 2012, Molecular dynamics and dissipative particle dynamics simulations for prediction of miscibility in polyethylene terephthalate/polylactide blends, Mol. Simul., 39, 415, 10.1080/08927022.2012.738294

Torres-Huerta, 2014, Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends, Eur. Polym. J., 61, 285, 10.1016/j.eurpolymj.2014.10.016

Li, 2013, Electrospun fibers of poly(ethylene terephthalate) blended with poly(lactic acid), J. Therm. Anal. Calorim., 116, 1351, 10.1007/s10973-013-3583-4

Mclauchlin, 2016, Studies on the thermal and mechanical behavior of PLA-PET blends, J. Appl. Polym. Sci., 133, 44147, 10.1002/app.44147

Torres-Huerta, 2016, Morphological and mechanical properties dependence of PLA amount in PET matrix processed by single-screw extrusion, Polym.-Plast. Technol. Eng., 55, 672, 10.1080/03602559.2015.1132433

Jiang, 2014, Morphology, interfacial and mechanical properties of polylactide/poly(ethylene terephthalate glycol) blends compatibilized by polylactide-g-maleic anhydride, Mater. Des., 59, 524, 10.1016/j.matdes.2014.03.016

Mantia, 2011, Effect of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles, Polym. Degrad. Stab., 21

Lorenzo, 2013, Miscibility and properties of poly(l-lactic acid)/poly(butylene terephthalate) blends, Eur. Polym. J., 49, 3309, 10.1016/j.eurpolymj.2013.06.038

Kim, 2010, Chain extension effects of para-phenylene diisocyanate on crystallization behavior and biodegradability of poly(lactic acid)/poly(butylene terephthalate) blends, Adv. Compos. Mater., 19, 331, 10.1163/092430409X12605406698471

Samthong, 2014, Morphology, structure, and properties of poly(lactic acid) microporous films containing poly(butylene terephthalate) fine fibers fabricated by biaxial stretching, J. Appl. Polym. Sci., 132, 41415

Samthong, 2015, Effects of size and shape of dispersed poly(butylene terephthalate) on isothermal crystallization kinetics and morphology of poly(lactic acid) blends, Polym. Eng. Sci., 56, 258, 10.1002/pen.24246

Lin, 2010, Miscibility, thermal and mechanical properties of melt-mixed poly(lactic acid)/poly(trimethylene terephthalate) blends, Polym.-Plast. Technol. Eng., 49, 1001, 10.1080/03602559.2010.482078

Zou, 2009, Crystallization, hydrolytic degradation, and mechanical properties of poly (trimethylene terephthalate)/poly(lactic acid) blends, Polym. Bull., 64, 471, 10.1007/s00289-009-0191-3

Zou, 2011, Thermal properties and non-isothermal crystallization behavior of poly(trimethylene terephthalate)/poly(lactic acid) blends, Polym. Int., 10.1002/pi.3087

Padee, 2013, Preparation of poly(lactic acid) and poly(trimethylene terephthalate) blend fibers for textile application, Energy Procedia, 34, 534, 10.1016/j.egypro.2013.06.782

Nagarajan, 2016, Reactive compatibilization of poly trimethylene terephthalate (PTT) and polylactic acid (PLA) using terpolymer: factorial design optimization of mechanical properties, Mater. Des., 110, 581, 10.1016/j.matdes.2016.08.022

Karsli, 2014, Properties of alkali treated short flax fiber reinforced poly(lactic acid)/polycarbonate composites, Fiber Polym., 15, 2607, 10.1007/s12221-014-2607-4

Lee, 2011, Compatibilizing effects for improving mechanical properties of biodegradable poly (lactic acid) and polycarbonate blends, Polym. Degrad. Stab., 96, 553, 10.1016/j.polymdegradstab.2010.12.019

Wang, 2012, Improvement in toughness and heat resistance of poly(lactic acid)/polycarbonate blend through twin-screw blending: Influence of compatibilizer type, J. Appl. Polym. Sci., 125, 10.1002/app.36920

Wang, 2012, The role of polycarbonate molecular weight in the poly(l-lactide) blends compatibilized with poly(butylene succinate-co-l-lactate), Polym. Eng. Sci., 53, 1171, 10.1002/pen.23374

Phuong, 2014, Compatibilization and property enhancement of poly(lactic acid)/polycarbonate blends through triacetin-mediated interchange reactions in the melt, Polymer, 55, 4498, 10.1016/j.polymer.2014.06.070

Srithep, 2014, Processing and characterization of poly(lactic acid) blended with polycarbonate and chain extender, J. Polym. Eng., 665, 10.1515/polyeng-2013-0309

Lin, 2015, Improving the impact property and heat-resistance of PLA/PC blends through coupling molecular chains at the interface, Polym. Adv. Technol., 26, 1247, 10.1002/pat.3560

Yuryev, 2017, Novel biocomposites from biobased PC/PLA blend matrix system for durable applications, Compos. Part B, 130, 158, 10.1016/j.compositesb.2017.07.030

Harris, 2012, Durability of polylactide-based polymer blends for injection-molded applications, J. Appl. Polym. Sci., 158

Chun-Yan, 2012, Transesterification between poly(lactic acid) and polycarbonate under flow field and its influence on morphology of the blends, Acta Polym. Sin., 012, 1225, 10.3724/SP.J.1105.2012.12145

Yuryev, 2016, Hydrolytic stability of polycarbonate/poly(lactic acid) blends and its evaluation via poly(lactic) acid median melting point depression, Polym. Degrad. Stab., 134, 227, 10.1016/j.polymdegradstab.2016.10.011

Sedlarik, 2011, Effect of phase arrangement on solid state mechanical and thermal properties of polyamide 6/polylactide based co-polyester blends, J. Macromol. Sci., Part B: Phys., 51, 982, 10.1080/00222348.2011.610265

Feng, 2010, Structure and property of polylactide/polyamide blends, J. Macromol. Sci., Part B: Phys., 49, 1117, 10.1080/00222341003609179

Wang, 2010, Polyamide-6/poly(lactic acid) blends compatibilized by the maleic anhydride grafted polyethylene-Octene elastomer, Polym.-Plast. Technol. Eng., 49, 1241, 10.1080/03602559.2010.496418

Kucharczyk, 2012, Correlation of morphology and viscoelastic properties of partially biodegradable polymer blends based on polyamide 6 and polylactide copolyester, Polym.-Plast. Technol. Eng., 51, 1432, 10.1080/03602559.2012.709296

Kucharczyk, 2012, Properties enhancement of partially biodegradable polyamide/polylactide blends through compatibilization with novel polyalkenyl-poly-maleic-anhydride-amide/imide-based additives, J. Reinf. Plast. Compos., 31, 189, 10.1177/0731684411434150

Khankrua, 2014, Effect of chain extenders on thermal and mechanical properties of poly(lactic acid) at high processing temperatures: potential application in PLA/polyamide 6 blend, Polym. Degrad. Stab., 108, 232, 10.1016/j.polymdegradstab.2014.04.019

Nijenhuis, 1996, High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties, Polymer, 37, 5849, 10.1016/S0032-3861(96)00455-7

Lee, 2008, Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy, Biophys. J., 95, 1590, 10.1529/biophysj.108.133025

Younes, 1988, Phase separation in poly(ethylene glycol)/poly(lactic acid) blends, Eur. Polym. J., 24, 765, 10.1016/0014-3057(88)90013-4

Nakane, 2004, Porous poly(L-lactic acid)/poly(ethylene glycol) blend films, J. Appl. Polym. Sci., 94, 965, 10.1002/app.20959

Sungsanit, 2012, Properties of linear poly(lactic acid)/polyethylene glycol blends, Polym. Eng. Sci., 52, 108, 10.1002/pen.22052

Sheth, 1997, J. Appl. Polym. Sci., 66, 1495, 10.1002/(SICI)1097-4628(19971121)66:8<1495::AID-APP10>3.0.CO;2-3

Hu, 2003, Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity, Polymer, 44, 5711, 10.1016/S0032-3861(03)00615-3

Hu, 2003, Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity, Polymer, 44, 5701, 10.1016/S0032-3861(03)00614-1

Lai, 2004, The effect of end groups of PEG on the crystallization behaviors of binary crystalline polymer blends PEG/PLLA, Polymer, 45, 3073, 10.1016/j.polymer.2004.03.003

Hassouna, 2011, New approach on the development of plasticized polylactide (PLA): grafting of poly(ethylene glycol) (PEG) via reactive extrusion, Eur. Polym. J., 47, 2134, 10.1016/j.eurpolymj.2011.08.001

Gui, 2012, Novel polyethylene glycol-based polyester-toughened polylactide, Mater. Lett., 71, 63, 10.1016/j.matlet.2011.12.045

Choi, 2013, Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending, Eur. Polym. J., 49, 2356, 10.1016/j.eurpolymj.2013.05.027

Park, 2011, PLA/chain-extended PEG blends with improved ductility, J. Appl. Polym. Sci., 123, 2360, 10.1002/app.34823

Ahmed, 2010, Thermal and rheological properties of l-polylactide/polyethylene glycol/silicate nanocomposites films, J. Food Sci., 75, 97, 10.1111/j.1750-3841.2010.01809.x

Elvassore, 2001, Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques, J. Pharm. Sci., 90, 1628, 10.1002/jps.1113

Riley, 2003, Washington C, Langmuir, 19

Seck, 2010, Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(d,l-lactide)-based resins, J. Control. Release, 148, 34, 10.1016/j.jconrel.2010.07.111

Oliveira, 2013, Properties of poly(lactic acid) and poly(ethylene oxide) solvent polymer mixtures and nanofibers made by solution blow spinning, J. Appl. Polym. Sci., 129, 3672, 10.1002/app.39061

Serra, 2014, Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds, Mater. Sci. Eng. C, 38, 55, 10.1016/j.msec.2014.01.003

Qiu, 2013, Miscibility and double glass transition temperature depression of poly(l-lactic acid) (PLLA)/poly(oxymethylene) (POM) blends, Macromolecules, 46, 5806, 10.1021/ma401084y

Qiu, 2014, Enhanced crystallization rate of poly(l-lactic acid) (PLLA) by polyoxymethylene (POM) fragment crystals in the PLLA/POM blends with a small amount of POM, J. Phys. Chem. B, 118, 7167, 10.1021/jp412519g

Mathurosemontri, 2014, The effect of injection speed on morphology and mechanical properties of Polyoxymethylene/poly(lactic acid) blends, Energy Procedia, 56, 57, 10.1016/j.egypro.2014.07.131

Guo, 2015, Poly(lactic acid)/polyoxymethylene blends: morphology, crystallization, rheology, and thermal mechanical properties, Polymer, 69, 103, 10.1016/j.polymer.2015.05.050

Zhang, 1998, Miscibility and phase behavior of poly(d,l-lactide)/poly(p-vinylphenol) blends, J. Appl. Polym. Sci., 70, 811, 10.1002/(SICI)1097-4628(19981024)70:4<811::AID-APP22>3.0.CO;2-Y

Zhang, 1998, Miscibility and crystallization behaviour of poly(l-lactide)/poly(p-vinylphenol) blends, Polymer, 39, 4841, 10.1016/S0032-3861(97)10167-7

Meaurio, 2005, Miscibility and specific interactions in blends of poly(l-lactide) with poly(vinylphenol), Macromolecules, 38, 1207, 10.1021/ma047818f

Meaurio, 2005, Direct measurement of the enthalpy of mixing in miscible blends of poly(dl-lactide) with poly(vinylphenol), Macromolecules, 38, 9221, 10.1021/ma051591m

Arenaza, 2010, Molecular dynamics modelling for the analysis and prediction of miscibility in polylactide/polyvinilphenol blends, Polymer, 51, 4431, 10.1016/j.polymer.2010.07.018

Ishida, 2009, Toughening of poly(l-lactide) by melt blending with rubbers, J. Appl. Polym. Sci., 113, 558, 10.1002/app.30134

Bitinis, 2011, Structure and properties of polylactide/natural rubber blends, Mater. Chem. Phys., 129, 823, 10.1016/j.matchemphys.2011.05.016

Suksut, 2010, Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber, J. Polym. Environ., 19, 288, 10.1007/s10924-010-0278-9

Juntuek, 2011, Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends, J. Appl. Polym. Sci., 125, 745, 10.1002/app.36263

Kowalczyk, 2011, Mechanisms of plastic deformation in biodegradable polylactide/poly(1,4-cis-isoprene) blends, J. Appl. Polym. Sci., 124, 4579

Chumeka, 2012, Effect of poly (vinyl acetate) on mechanical properties and characteristics of poly(lactic acid)/natural rubber blends, J. Polym. Environ., 21, 450, 10.1007/s10924-012-0531-5

Huang, 2012, Study on the effect of dicumyl peroxide on structure and properties of poly(lactic acid)/natural rubber blend, J. Polym. Environ., 21, 375, 10.1007/s10924-012-0544-0

Chumeka, 2014, Bio-based triblock copolymers from natural rubber and poly(lactic acid): synthesis and application in polymer blending, Polymer, 55, 4478, 10.1016/j.polymer.2014.06.091

Mohammad, 2016, Influence of compatibilizer on the structure properties of polylactic acid/natural rubber blends, Polym. Sci., Ser. A, 58, 177, 10.1134/S0965545X16020164

Pattamaprom, 2016, Improvement in impact resistance of polylactic acid by masticated and compatibilized natural rubber, Iran. Polym. J., 25, 169, 10.1007/s13726-015-0411-7

Bijarimi, 2012, Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized natural rubber blends, J. Elastomers Plast., 46, 338, 10.1177/0095244312468442

Bijarimi, 2014, Melt blends of poly(lactic acid)/natural rubber and liquid epoxidised natural rubber, J. Rubb. Res., 17, 57

Rosli, 2016, Mechanical and thermal properties of natural rubber-modified poly(lactic acid) compatibilized with telechelic liquid natural rubber, Polym. Test., 54, 196, 10.1016/j.polymertesting.2016.07.021

Jaratrotkamjorn, 2011, Toughness enhancement of poly(lactic acid) by melt blending with natural rubber, J. Appl. Polym. Sci., 124, 5027

Ayutthaya, 2014, Thermal and mechanical properties of poly(lactic acid)/natural rubber blend using epoxidized natural rubber and poly(methyl methacrylate) as co-compatibilizers, Macromol. Res., 22, 686, 10.1007/s13233-014-2102-1

Zhang, 2013, Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber, Mater. Des., 45, 198, 10.1016/j.matdes.2012.09.024

Desa, 2016, Influence of rubber content on mechanical, thermal, and morphological behavior of natural rubber toughened poly(lactic acid)-multiwalled carbon nanotube nanocomposites, J. Appl. Polym. Sci., 133, 44344

Maroufkhani, 2017, Polylactide (PLA) and acrylonitrile butadiene rubber (NBR) blends: the effect of ACN content on morphology, compatibility and mechanical properties, Polymer, 115, 37, 10.1016/j.polymer.2017.03.025

Chen, 2014, Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase, Appl. Mater. Interfaces, 6, 3811, 10.1021/am5004766

Yuan, 2014, Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems, Carbohydr. Polym., 113, 438, 10.1016/j.carbpol.2014.07.044

Xu, 2014, Physical blend of PLA/NR with co-continuous phase structure: preparation, rheology property, mechanical properties and morphology, Polym. Test., 37, 94, 10.1016/j.polymertesting.2014.05.005

Chen, 2015, Biobased heat-triggered shape-memory polymers based on polylactide/epoxidized natural rubber blend system fabricated via peroxide-induced dynamic vulcanization: co-continuous phase structure, shape memory behavior, and interfacial compatibilization, Ind. Eng. Chem. Res., 54, 8723, 10.1021/acs.iecr.5b02195

Wang, 2015, Supertoughened biobased poly(lactic acid)–epoxidized natural rubber thermoplastic vulcanizates: fabrication, co-continuous phase structure, interfacial in situ compatibilization, and toughening mechanism, J. Phys. Chem. B, 119, 12138, 10.1021/acs.jpcb.5b06244

Yuan, 2016, Phenolic resin-induced dynamically vulcanized polylactide/natural rubber blends, Polym.-Plast. Technol. Eng., 55, 1115, 10.1080/03602559.2015.1132437

Zhang, 2013, Shape memory polymer hybrids of SBS/dl-PLA and their shape memory effects, Mater. Chem. Phys., 137, 750, 10.1016/j.matchemphys.2012.10.006

Wu, 2015, Enhancing the PLA crystallization rate and mechanical properties by melt blending with poly(styrene-butadiene-styrene) copolymer, Polym. Plast. Test. Technol., 54, 1043, 10.1080/03602559.2014.974274

Wang, 2016, Highly toughened polylactide/epoxidized poly(styrene-b-butadiene-b-styrene) blends with excellent tensile performance, Eur. Polym. J., 85, 92, 10.1016/j.eurpolymj.2016.10.019

Tsou, 2015, Biocompatibility and characterization of polylactic acid/styrene-ethylene-butylene-styrene composites, Bio-Med. Mater. Eng., 26

Sangeetha, 2016, Toughening of polylactic acid using styrene ethylene butylene styrene: mechanical, thermal, and morphological studies, Polym. Eng. Sci., 56, 669, 10.1002/pen.24293

Jiang, 2012, Rubber-toughened PLA blends with low thermal expansion, J. Appl. Polym. Sci., 128, 3993, 10.1002/app.38642

Zhao, 2013, Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid)(PLA), Polym. Test., 32, 299, 10.1016/j.polymertesting.2012.11.012

Lim, 2016, Toughening poly(lactic acid) (PLA) throughin situreactive blending with liquid polybutadiene rubber (LPB), Compos. Interface, 23, 807, 10.1080/09276440.2016.1175168

Vuillaume, 2018, Compatibilisation of various PLA/thermoplastic elastomer blends with diisocyanate coupling agent, Plast., Rubber Compos., 47, 95, 10.1080/14658011.2018.1439716

Gu, 2018, Toughening poly(lactic acid) with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers, Polymer, 156, 261, 10.1016/j.polymer.2018.09.027

Yuan, 1998, Polyurethane toughened polylactide, Polym. Bull., 40, 485, 10.1007/s002890050280

Zeng, 2011, Improving flexibility of poly(l-lactide) by blending with poly(l-lactic acid) based poly(ester-urethane): morphology, mechanical properties, and crystallization behaviors, Ind. Chem. Eng. Res., 50, 6124, 10.1021/ie102422q

Feng, 2013, Flexibility improvement of poly(l-lactide) by reactive blending with poly(ether urethane) containing poly(ethylene glycol) blocks, Macromol. Chem. Phys., 214, 824, 10.1002/macp.201200696

Imre, 2013, Structure, properties and interfacial interactions in poly(lactic acid)/polyurethane blends prepared by reactive processing, Eur. Polym. J., 49, 3104, 10.1016/j.eurpolymj.2013.07.007

Liu, 2014, In situ formed crosslinked polyurethane toughened polylactide, Polym. Chem., 5, 2530, 10.1039/c3py01649h

Lu, 2014, Supertoughened poly(lactic acid)/polyurethane blend material by in situ reactive interfacial compatibilization via dynamic vulcanization, Ind. Chem. Eng. Res., 53, 17386, 10.1021/ie503092w

Li, 2007, Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer, Macromol. Biosci., 7, 921, 10.1002/mabi.200700027

Feng, 2010, Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends, J. Appl. Polym. Sci., 119, 2778, 10.1002/app.32863

Feng, 2011, Structure and properties of ultradrawn polylactide/thermoplastic polyurethane elastomer blends, J. Macromol. Sci., Part B: Phys., 50, 1500, 10.1080/00222348.2010.518889

Han, 2011, Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends, J. Appl. Polym. Sci., 120, 3217, 10.1002/app.33338

Hong, 2011, A novel composite coupled hardness with flexibleness-polylactic acid toughen with thermoplastic polyurethane, J. Appl. Polym. Sci., 121, 855, 10.1002/app.33675

Jaso, 2014, Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends, J. Appl. Polym. Sci., 31, 41104

Dogan, 2013, Reactive compatibilization of PLA/TPU blends with a diisocyanate, J. Appl. Polym. Sci., 131, 40251

Lai, 2015, Compatibility improvement of poly(lactic acid)/thermoplastic polyurethane blends with 3-aminopropyl triethoxysilane, J. Appl. Polym. Sci., 132, 42322, 10.1002/app.42322

Zhao, 2015, Largely toughening biodegradable poly(lactic acid)/thermoplastic polyurethane blends by adding MDI, J. Appl. Polym. Sci., 132, 42511, 10.1002/app.42511

Oliaei, 2015, Investigation of structure and mechanical properties of toughened poly(l-lactide)/thermoplastic poly(ester urethane) blends, J. Appl. Polym. Sci., 133, 43104

Lai, 2013, Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends, J. Polym. Res., 20, 140, 10.1007/s10965-013-0140-6

Song, 2015, Biocompatible shape memory polymer actuators with high force capabilities, Eur. Polym. J., 67, 186, 10.1016/j.eurpolymj.2015.03.067

Jašo, 2015, Biodegradability study of polylactic acid/thermoplastic polyurethane blends, Polym. Test., 47, 1, 10.1016/j.polymertesting.2015.07.011

Whelan, 1994

Burt, 1995, Controlled delivery of taxol from microspheres composed of a blend of ethylene-vinyl acetate copolymer and poly (d,l-lactic acid), Cancer Lett., 88, 73, 10.1016/0304-3835(94)03614-O

Kenawy, 2002, Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend, J. Control. Release, 81, 57, 10.1016/S0168-3659(02)00041-X

Yoon, 1999, Thermal and mechanical properties of poly(l-lactic acid)–poly (ethylene-co-vinyl acetate) blends, Polymer, 40, 2303, 10.1016/S0032-3861(98)00463-7

Liu, 2011, Evaluation of two polymeric blends (EVA/PLA and EVA/PEG) as coating film materials for paclitaxel-eluting stent application, J. Mater. Sci. Mater. Med., 22, 327, 10.1007/s10856-010-4213-3

Ma, 2012, Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate content, Eur. Polym. J., 48, 146, 10.1016/j.eurpolymj.2011.10.015

Ma, 2015, Bio-based poly(lactide)/ethylene-co-vinyl acetate thermoplastic vulcanizates by dynamic crosslinking: structure vs. property, RSC Adv., 5, 15962, 10.1039/C4RA14194F

Xu, 2016, Transparent blown films from poly(lactide) and poly(ethylene-co-vinyl acetate) compounds: structure and property, Polym. Degrad. Stab., 129, 328, 10.1016/j.polymdegradstab.2016.05.010

Zhang, 2016, Morphology and properties of super-toughened bio-based poly(lactic acid)/poly(ethylene-co-vinyl acetate) blends by peroxide-induced dynamic vulcanization and interfacial compatibilization, Polym. Test., 56, 354, 10.1016/j.polymertesting.2016.11.003

Singla, 2016, Fabrication of super tough poly(lactic acid)/ethylene-co-vinyl-acetate blends via a melt recirculation approach: static-short term mechanical and morphological interpretation, RSC Adv., 6, 14580, 10.1039/C5RA24897C

Pracella, 2016, Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer, Carbohydr. Polym., 137, 515, 10.1016/j.carbpol.2015.10.094

Shi, 2014, Effects of heat treatment on the damping of EVM/PLA blends modified with polyols, Polym. Test., 35, 87, 10.1016/j.polymertesting.2014.02.008

Shi, 2014, The effects of a polyol on the damping properties of EVM/PLA blends, Polym. Test., 33, 1, 10.1016/j.polymertesting.2013.10.007

He, 2016, Damping properties of ethylene-vinyl acetate rubber/polylactic acid blends, J. Mater. Sci. Chem. Eng., 04, 15

Shi, 2016, Effects of fillers on the damping property of ethylene vinyl-acetate/polylactic acid blends, J. Mater. Sci. Chem. Eng., 04, 89

Cong, 2012, A novel enzymatic biodegradable route for PLA/EVA blends under agricultural soil of Vietnam, Mater. Sci. Eng. C, 32, 558, 10.1016/j.msec.2011.12.012

Moura, 2013, Characterization of EVA/PLA blends when exposed to different environments, J. Polym. Environ., 22, 148, 10.1007/s10924-013-0614-y

Cao, 2003, DSC study of biodegradable poly(lactic acid) and poly(hydroxy ester ether) blends, Thermochim. Acta, 406, 115, 10.1016/S0040-6031(03)00252-1

Zhang, 2003, Miscibility and phase structure of binary blends of polylactide and poly(vinylpyrrolidone), J. Appl. Polym. Sci., 88, 973, 10.1002/app.11735

Khurma, 2005, Miscibility study of solution cast blends of poly(lactic acid) and poly(vinyl butyral), S. Pac. J. Nat. App. Sci., 23, 22, 10.1071/SP05004

Pezzin, 2003, Poly(para-dioxanone) and poly(l-lactic acid) blends: thermal, mechanical, and morphological properties, J. Appl. Polym. Sci., 88, 2744, 10.1002/app.11984

Meng, 2012, Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties, Eur. Polym. J., 48, 127, 10.1016/j.eurpolymj.2011.10.009

Kang, 2013, Employing a novel bioelastomer to toughen polylactide, Polymer, 54, 2450, 10.1016/j.polymer.2013.02.053

Kowalczyk, 2014, Toughening of polylactide by blending with a novel random aliphatic–aromatic copolyester, Eur. Polym. J., 59, 59, 10.1016/j.eurpolymj.2014.07.002

Ho, 2008, Synthesis and characterization of TPO–PLA copolymer and its behavior as compatibilizer for PLA/TPO blends, Polymer, 49, 3902, 10.1016/j.polymer.2008.06.054

Oyama, 2009, Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer, Polymer, 50, 747, 10.1016/j.polymer.2008.12.025

Li, 2011, Morphology, rheology, and mechanical properties of polylactide/poly(ethylene-co-octene) blends, J. Macromol. Sci., Part B: Phys., 50, 2050, 10.1080/00222348.2011.557617

Su, 2009, Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane), Eur. Polym. J., 45, 2428, 10.1016/j.eurpolymj.2009.04.028

Liu, 2013, Blends of polylactide/thermoplactic elastomer: miscibility, physical aging and crystallization behaviors, Fiber Polym., 14, 1688, 10.1007/s12221-013-1688-9

Ran, 2010, Thermal and mechanical properties of blends of polylactide and poly(ethylene glycol-co-propylene glycol): influence of annealing, J. Appl. Polym. Sci., 116, 2050

Hazer, 2011, Synthesis of polylactide-b-poly (dimethyl siloxane) block copolymers and their blends with pure polylactide, J. Polym. Environ., 20, 477, 10.1007/s10924-011-0406-1

Xu, 2016, Selectively cross-linked poly (lactide)/ethylene-glycidyl methacrylate-vinyl acetate thermoplastic elastomers with partial dual-continuous network-like structures and shape memory performances, Eur. Polym. J., 84, 1, 10.1016/j.eurpolymj.2016.09.004

Pan, 2014, Enhanced nucleation and crystallization of poly(l-lactic acid) by immiscible blending with poly(vinylidene fluoride), Ind. Eng. Chem. Res., 53, 3148, 10.1021/ie404085a

Salehiyan, 2018, Processing-driven morphology development and crystallization behavior of immiscible polylactide/poly(vinylidene fluoride) blends, Macromol. Mater. Eng., 303, 10.1002/mame.201800349

Dong, 2016, Dramatic improvement in toughness of PLLA/PVDF blends: the effect of compatibilizer architectures, ACS Sustain. Chem. Eng., 4, 4480, 10.1021/acssuschemeng.6b01420

Picciani, 2010, Structural, electrical, mechanical, and thermal properties of electrospun poly(lactic acid)/polyaniline blend fibers, Macromol. Mater. Eng., 295, 618, 10.1002/mame.201000019

Liao, 2009, Preparation and characterization of ternary blends composed of polylactide, poly(ɛ-caprolactone) and starch, Mater. Sci. Eng. A, 515, 207, 10.1016/j.msea.2009.03.003

Carmona, 2014, Properties of a biodegradable ternary blend of thermoplastic starch (TPS), poly(ε-Caprolactone) (PCL) and poly(lactic acid) (PLA), J. Polym. Environ., 23, 83, 10.1007/s10924-014-0666-7

Mittal, 2015, Mechanical, thermal, rheological and morphological properties of binary and ternary blends of PLA, TPS and PCL, Macromol. Mater. Eng., 300, 423, 10.1002/mame.201400332

Mittal, 2014, PLA, TPS and PCL binary and ternary blends: structural characterization and time-dependent morphological changes, Colloid Polym. Sci., 293, 573, 10.1007/s00396-014-3458-7

Davoodi, 2016, Correction: preparation and characterization of interface-modified PLA/starch/PCL ternary blends using PLLA/triclosan antibacterial nanoparticles for medical applications, RSC Adv., 6

Davachi, 2017, Interface modified polylactic acid/starch/poly ε-caprolactone antibacterial nanocomposite blends for medical applications, Carbohydr. Polym., 155, 336, 10.1016/j.carbpol.2016.08.037

Wang, 2012, Poly(ethylene glycol) grafted starch introducing a novel interphase in poly(lactic acid)/poly(ethylene glycol)/starch ternary composites, J. Polym. Environ., 20, 528, 10.1007/s10924-012-0416-7

Shi, 2011, Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE, Polym. Degrad. Stab., 96, 175, 10.1016/j.polymdegradstab.2010.10.002

Ferrarezi, 2012, Poly(ethylene glycol) as a compatibilizer for poly(lactic acid)/thermoplastic starch blends, J. Polym. Environ., 21, 151, 10.1007/s10924-012-0480-z

Zhen, 2011, Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene succinate), Polym. Renewable Resour., 2, 49

Ma, 2012, Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene)-co-(vinyl acetate)/starch blends via reactive compatibilization, Polym. Int., 61, 1284, 10.1002/pi.4204

Zhou, 2015, Mechanical properties of biodegradable polylactide/poly(ether-block-amide)/thermoplastic starch blends: effect of the crosslinking of starch, J. Appl. Polym. Sci., 133, 42297

Kanzawa, 2011, Mechanical properties and morphological changes of poly(lactic acid)/polycarbonate/poly(butylene adipate-co-terephthalate) blend through reactive processing, J. Appl. Polym. Sci., 121, 2908, 10.1002/app.33916

Chen, 2014, Biobased ternary blends of lignin, poly(lactic acid), and poly(butylene adipate-co-terephthalate): the effect of lignin heterogeneity on blend morphology and compatibility, J. Polym. Environ., 22, 439, 10.1007/s10924-014-0704-5

Chen, 2016, J. Macromol. Sci., Part A: Pure Appl. Chem., 53, 354, 10.1080/10601325.2016.1166001

Ravati, 2014, High performance materials based on a self-assembled multiple-percolated ternary blend, AICHE J., 60, 3005, 10.1002/aic.14495

Zhang, 2012, Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties, Appl. Mater. Interfaces, 4, 3091, 10.1021/am3004522

Ravati, 2014, Phase identification and interfacial transitions in ternary polymer blends by ToF-SIMS, Polymer, 55, 6110, 10.1016/j.polymer.2014.09.013

Yang, 2016, Toughening effect of poly(methyl methacrylate) on an immiscible poly(vinylidene fluoride)/polylactide blend, Polym. Int., 65, 675, 10.1002/pi.5109

Auliawan, 2011, Nanocomposites based on vermiculite clay and ternary blend of poly(L-lactic acid), poly(methyl methacrylate), and poly(ethylene oxide), Polym. Compos., 32, 1916, 10.1002/pc.21194

Auliawan, 2012, Crystallization kinetics and degradation of nanocomposites based on ternary blend of poly(L-lactic acid), poly(methyl methacrylate), and poly(ethylene oxide) with two different organoclays, J. Appl. Polym. Sci., 125, 10.1002/app.36761

Liu, 2010, Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization, Macromolecules, 43, 6058, 10.1021/ma101108g

Liu, 2012, Effects of reactive blending temperature on impact toughness of poly(lactic acid) ternary blends, Polymer, 53, 272, 10.1016/j.polymer.2011.12.036

Song, 2012, Effects of ionomer characteristics on reactions and properties of poly(lactic acid) ternary blends prepared by reactive blending, Polymer, 53, 2476, 10.1016/j.polymer.2012.03.050

Zhang, 2014, Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance, Appl. Mater. Interfaces, 6, 12436, 10.1021/am502337u

Nyambo, 2012, Toughening of brittle poly(lactide) with hyperbranched poly(ester-amide) and isocyanate-terminated prepolymer of polybutadiene, J. Mater. Sci., 47, 5158, 10.1007/s10853-012-6393-3

Sangeetha, 2016, Super toughened renewable poly(lactic acid) based ternary blends system: effect of degree of hydrolysis of ethylene vinyl acetate on impact and thermal properties, RSC Adv., 6, 72681, 10.1039/C6RA13366E

Wang, 2008, Mechanical, thermal and degradation properties of poly(d,l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend, Polym. Degrad. Stab., 93, 1364, 10.1016/j.polymdegradstab.2008.03.026

Hashima, 2010, Structure-properties of super-tough PLA alloy with excellent heat resistance, Polymer, 51, 3934, 10.1016/j.polymer.2010.06.045

Buddhiranon, 2011, Morphology development in relation to the ternary phase diagram of biodegradable PDLLA/PCL/PEO blends, Macromol. Chem. Phys., 212, 1379, 10.1002/macp.201100042

Ouyang, 2012, Preparation and properties of poly(lactic acid)/cellulolytic enzyme lignin/PGMA ternary blends, Chin. Chem. Lett., 23, 351, 10.1016/j.cclet.2011.11.023

Zolali, 2017, Compatibilization and toughening of co-continuous ternary blends via partially wet droplets at the interface, Polymer, 114, 277, 10.1016/j.polymer.2017.02.093

Maani, 2016, Rheological and morphological properties of thermoplastic olefin blends containing nanosilica, J. Nonnewton Fluid Mech., 233, 95, 10.1016/j.jnnfm.2016.01.017

Salehiyan, 2018, Influence of nanoclay localization on structure-property relationships of polylactide-based biodegradable blend nanocomposites, Macromol. Mater. Eng., 303, 10.1002/mame.201800134

Cabedo, 2006, Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications, Macromol. Symp., 233, 191, 10.1002/masy.200690017

Salehiyan, 2013, Effect of organoclay on non-linear rheological properties of poly(lactic acid)/poly(caprolactone) blends, Korean J. Chem. Eng., 30, 1013, 10.1007/s11814-013-0035-6

Urquijo, 2016, Structure and properties of poly(lactic acid)/poly(ε-caprolactone) nanocomposites with kinetically induced nanoclay location, J. Appl. Polym. Sci., 133, 10.1002/app.43815

Ren, 2007, Mechanical and thermal properties of poly(lactid acid)/starch/montmorillonite biodegradable blends, Polym. Compos., 15, 633, 10.1177/096739110701500806

Chapple, 2012, Mechanical, thermal, and fire properties of polylactide/starch blend/clay composites, J. Therm. Anal. Calorim., 113, 703, 10.1007/s10973-012-2776-6

Paglicawan, 2013, Influence of nanoclay on the properties of thermoplastic starch/poly(lactic acid) blends, J. Biobaased Mater. Bioenergy, 7, 102, 10.1166/jbmb.2013.1276

Wokadala, 2015, Morphology, thermal properties and crystallization kinetics of ternary blends of the polylactide and starch biopolymers and nanoclay: the role of nanoclay hydrophobicity, Polymer, 71, 82, 10.1016/j.polymer.2015.06.058

Jiang, 2009, Properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/nanoparticle ternary composites, Ind. Eng. Chem. Res., 48, 7594, 10.1021/ie900576f

Kumar, 2010, Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites, Bioresour. Technol., 101, 8406, 10.1016/j.biortech.2010.05.075

Nofar, 2018, Synergistic effects of chain extender and nanoclay on the crystallization behavior of polylactide, Int. J. Mater. Sci. Res., 1, 1, 10.18689/ijmsr-1000101

Ojijo, 2011, Morphology and properties of polymer composites based on biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend and nanoclay, Macromol. Mater. Eng., 296, 865, 10.1002/mame.201100042

Ojijo, 2012, Unique isothermal crystallization phenomenon in the ternary blends of biopolymers polylactide and poly[(butylene succinate)-co-adipate] and nano-clay, Polymer, 53, 505, 10.1016/j.polymer.2011.12.007

Ojijo, 2012, Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend composites, Appl. Mater. Interfaces, 4, 2395, 10.1021/am201850m

Malwela, 2015, Enzymatic degradation behavior of nanoclay reinforced biodegradable PLA/PBSA blend composites, Int. J. Biol. Macromol., 77, 131, 10.1016/j.ijbiomac.2015.03.018

Nuñez, 2011, Nanocomposites of PLA/PP blends based on sepiolite, Polym. Bull., 67, 1991, 10.1007/s00289-011-0616-7

Nuñez, 2011, Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite, Polym. Eng. Sci., 52, 988, 10.1002/pen.22168

Ebadi-Dehaghani, 2015, Experimental and theoretical analyses of mechanical properties of PP/PLA/clay nanocomposites, Compos. Part B, 69, 133, 10.1016/j.compositesb.2014.09.006

Ebadi-Dehaghani, 2016, On localization of clay nanoparticles in polypropylene/poly(lactic acid) blend nanocomposites: correlation with mechanical properties, J. Macromol. Sci., Part B: Phys., 55, 344, 10.1080/00222348.2016.1151475

Bitinis, 2012, Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites, Compos. Sci. Technol., 72, 305, 10.1016/j.compscitech.2011.11.018

Bitinis, 2014, Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites, App. Cly. Sci., 93–94, 78, 10.1016/j.clay.2014.02.024

Bitinis, 2013, Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I. processing and morphology, Carbohydr. Polym., 96, 611, 10.1016/j.carbpol.2013.02.068

Bitinis, 2013, Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: properties evaluation, Carbohydr. Polym., 96, 621, 10.1016/j.carbpol.2013.03.091

Ock, 2016, Effect of organoclay as a compatibilizer in poly(lactic acid) and natural rubber blends, Eur. Polym. J., 76

Ock, 2016, Characterization of compatibilizing effect of organoclay in poly(lactic acid) and natural rubber blends by FT-rheology, Macromolecules, 49, 2832, 10.1021/acs.macromol.5b02157

Ashabi, 2013, Tuning the processability, morphology and biodegradability of clay incorporated PLA/LLDPE blends via selective localization of nanoclay induced by melt mixing sequence, Express Polym Lett, 7, 21, 10.3144/expresspolymlett.2013.3

Ashabi, 2013, Effect of clay type and polymer matrix on microstructure and tensile properties of PLA/LLDPE/clay nanocomposites, J. Appl. Polym. Sci., 130, 749, 10.1002/app.39209

Abdolrasouli, 2014, Morphology development, melt linear viscoelastic properties and crystallinity of polylactide/polyethylene/organoclay blend nanocomposites, J. Appl. Polym. Sci., 132

Zhao, 2013, Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites, Compos. Part B, 51, 79, 10.1016/j.compositesb.2013.02.034

Derho, 2014, Structural evolution of poly(lactic acid)/poly(ethylene oxide)/unmodified clay upon ambient ageing, J. Appl. Polym. Sci., 131, 10.1002/app.40426

Nuzzo, 2014, Nanoparticle-induced co-continuity in immiscible polymer blends – a comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes, Polymer, 55, 4908, 10.1016/j.polymer.2014.07.036

Rashmi, 2016, Toughening of poly(lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes, Express Polym Lett

Aghjeh, 2015, In depth analysis of micro-mechanism of mechanical property alternations in PLA/EVA/clay nanocomposites: a combined theoretical and experimental approach, Mater. Des., 88, 1277, 10.1016/j.matdes.2015.09.081

Aghjeh, 2016, Application of linear rheology in determination of nanoclay localization in PLA/EVA/Clay nanocomposites: correlation with microstructure and thermal properties, Compos. Part B, 86, 273, 10.1016/j.compositesb.2015.09.064

Singla, 2016, Mechanical, morphological, and solid-state viscoelastic responses of poly(lactic acid)/ethylene-co-vinyl-acetate super-tough blend reinforced with halloysite nanotubes, J. Mater. Sci., 51, 10278, 10.1007/s10853-016-0255-3

Oliaei, 2016, Investigation on the properties of poly(l-lactide)/thermoplastic poly(ester urethane)/halloysite nanotube composites prepared based on prediction of halloysite nanotube location by measuring free surface energies, Polymer, 104, 104, 10.1016/j.polymer.2016.09.092

Wu, 2009, Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend, Biomacromolecules, 10, 417, 10.1021/bm801183f

Laredo, 2010, AC conductivity of selectively located carbon nanotubes in poly(ε-caprolactone)/polylactide blend nanocomposites, Biomacromolecules, 11, 1339, 10.1021/bm100135n

Xu, 2011, Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly(ε-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes, Appl. Mater. Interfaces, 3, 4858, 10.1021/am201355j

Wu, 2011, Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends, Macromol. Chem. Phys., 212, 613, 10.1002/macp.201000579

Ko, 2009, Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites, Polym. Bull., 63, 125, 10.1007/s00289-009-0072-9

Shi, 2011, Carbon nanotubes induced microstructure and mechanical properties changes in cocontinuous poly(l-lactide)/ethylene-co-vinyl acetate blends, Polym. Adv. Technol., 23, 783, 10.1002/pat.1959

Raja, 2013, Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites, Eur. Polym. J., 49, 3492, 10.1016/j.eurpolymj.2013.08.009

Nasti, 2016, Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends, Polymer, 99, 193, 10.1016/j.polymer.2016.06.058

Lee, 2014, Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes, Compos. Sci. Technol., 103, 78, 10.1016/j.compscitech.2014.08.019

Jang, 2015, Influence of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of polycarbonate/poly(lactic acid)/LA-g-MWCNT composites, Macromol. Res., 23, 916, 10.1007/s13233-015-3129-7

Park, 2012, Effect of multi-walled carbon nanotube dispersion on the electrical and rheological properties of poly(propylene carbonate)/poly(lactic acid)/multi-walled carbon nanotube composites, J. Mater. Sci., 48, 481, 10.1007/s10853-012-6762-y

Arrieta, 2014, PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties, Polym. Degrad. Stab., 107, 139, 10.1016/j.polymdegradstab.2014.05.010

Arrieta, 2014, Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties, Carbohydr. Polym., 107, 16, 10.1016/j.carbpol.2014.02.044

Arrieta, 2015, Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends, Carbohydr. Polym., 121, 265, 10.1016/j.carbpol.2014.12.056

Arrieta, 2016, Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals, Ind. Crop. Prod., 93, 290, 10.1016/j.indcrop.2015.12.058

Luzi, 2016, Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres, Ind. Crop. Prod., 93, 276, 10.1016/j.indcrop.2016.01.045

Zhang, 2016, Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends, Carbohydr. Polym., 140, 374, 10.1016/j.carbpol.2015.12.073

Pracella, 2014, Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc, Polymer, 55, 3720, 10.1016/j.polymer.2014.06.071

Heshmati, 2018, Cellulose nanocrystal in poly(lactic acid)/polyamide11 blends: preparation, morphology and co-continuity, Eur. Polym. J., 98, 11, 10.1016/j.eurpolymj.2017.10.027

Heshmati, 2017, Tuning the localization of finely dispersed cellulose nanocrystal in poly (lactic acid)/bio-polyamide11 blends, J. Polym. Sci. B Polym. Phys., 56, 576, 10.1002/polb.24563

Shen, 2015, Selective localization of reduced graphene oxides at the interface of PLA/EVA blend and its resultant electrical resistivity, Polym. Compos., 38, 1982, 10.1002/pc.23769

Forouharshad, 2015, A low-environmental-impact approach for novel bio-composites based on PLLA/PCL blends and high surface area graphite, Eur. Polym. J., 70, 28, 10.1016/j.eurpolymj.2015.06.016

Kelnar, 2017, Graphite nanoplatelets-modified PLA/PCL: effect of blend ratio and nanofiller localization on structure and properties, J. Mech. Behav. Biomed. Mater., 71, 271, 10.1016/j.jmbbm.2017.03.028

Botlhoko, 2017, Thermal, mechanical, and rheological properties of graphite- and graphene oxide-filled biodegradable polylactide/poly(ɛ-caprolactone) blend composites, J. Appl. Polym. Sci., 134, 10.1002/app.45373

Botlhoko, 2018, Morphological development and enhancement of thermal, mechanical, and electronic properties of thermally exfoliated graphene oxide-filled biodegradable polylactide/poly(ε-caprolactone) blend composites, Polymer, 139, 188, 10.1016/j.polymer.2018.02.005

Wu, 2017, Effect of nitrogen-doped graphene on morphology and properties of immiscible poly(butylene succinate)/polylactide blends, Compos. Part B, 113, 300, 10.1016/j.compositesb.2017.01.037

Li, 2012, Preparation and properties of polylactide/poly(ethylene-co-octene)/nano-SiO2 ternary composites, J. Macromol. Sci., Part B: Phys., 51, 1766, 10.1080/00222348.2012.659633

Yu, 2015, Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles, Polym. Test., 45, 107, 10.1016/j.polymertesting.2015.06.001

Xiu, 2014, Improving impact toughness of polylactide/poly(ether)urethane blends via designing the phase morphology assisted by hydrophilic silica nanoparticles, Polymer, 55, 1593, 10.1016/j.polymer.2014.01.057

Vrsaljko, 2014, Potential role of nanofillers as compatibilizers in immiscible PLA/LDPE Blends, J. Appl. Polym. Sci., 132

Dil, 2015, Localization of micro and nano- silica particles in a high interfacial tension poly(lactic acid)/low density polyethylene system, Polymer, 77, 156, 10.1016/j.polymer.2015.08.063

Dil, 2016, The effect of the interfacial assembly of nano-silica in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends on morphology, rheology and mechanical properties, Eur. Polym. J., 85, 635, 10.1016/j.eurpolymj.2016.07.022

Hao, 2016, Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica, Polymer, 82, 57, 10.1016/j.polymer.2015.11.029

Xiu, 2013, Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(l-lactide)/poly(ether)urethane blends, Express Polym Lett, 7, 261, 10.3144/expresspolymlett.2013.24

Mofokeng, 2015, Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler, Polym. Test., 45, 93, 10.1016/j.polymertesting.2015.05.007

Agwuncha, 2014, Influence of boehmite nanoparticle loading on the mechanical, thermal, and rheological properties of biodegradable polylactide/poly(ϵ-caprolactone) blends, Macromol. Mater. Eng., 300, 31, 10.1002/mame.201400212

Dil, 2016, Assembling copper nanowires at the interface and in discrete phases in PLA-based polymer blends, Eur. Polym. J., 85, 187, 10.1016/j.eurpolymj.2016.09.053

Grande, 2011, Compatible ternary blends of chitosan/poly(vinyl alcohol)/poly(lactic acid) produced by oil-in-water emulsion processing, Biomacromolecules, 12, 907, 10.1021/bm101227q

Zhang, 2012, Fabrication and characterization of dense chitosan/polyvinyl-alcohol/poly-lactic-acid blend membranes, Fiber Polym., 13, 571, 10.1007/s12221-012-0571-4

Zakaria, 2013, Mechanical properties and morphological characterization of PLA/chitosan/epoxidized natural rubber composites, Adv. Mater. Sci. Eng., 3

Arrieta, 2016, Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites, Polym. Degrad. Stab., 132, 145, 10.1016/j.polymdegradstab.2016.02.027

Nofar, 2017

Nofar, 2016, Effects of nano-/micro-sized additives and the corresponding induced crystallinity on the extrusion foaming behavior of PLA using supercritical CO2, Mater. Des., 101, 24, 10.1016/j.matdes.2016.03.147

Keshtkar, 2014, Extruded PLA/clay nanocomposite foams blown with supercritical CO2, Polymer, 55, 4077, 10.1016/j.polymer.2014.06.059

Ameli, 2013, Processing and characterization of solid and foamed injection-molded polylactide with talc, J. Cell. Plast., 49, 351, 10.1177/0021955X13481993

Ameli, 2014, Development of high void fraction polylactide composite foams using injection molding: mechanical and thermal insulation properties, Compos. Sci. Technol., 90, 88, 10.1016/j.compscitech.2013.10.019

Ameli, 2015, Development of high void fraction polylactide composite foams using injection molding: crystallization and foaming behaviors, Chem. Eng., 262, 78, 10.1016/j.cej.2014.09.087

Najafi, 2015, Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams, Eur. Polym. J., 73, 455, 10.1016/j.eurpolymj.2015.11.003

Nofar, 2015, Development of polylactide bead foam with double crystal melting peak structure, Polymer, 69, 83, 10.1016/j.polymer.2015.05.048

Nofar, 2015, A novel technology to manufacture biodegradable polylactide bead foam products, Mater. Des., 83, 413, 10.1016/j.matdes.2015.06.052

Park CB, Nofar M. A method for the preparation of PLA bead foams. Int Appl Patent No: PCT/NL2013/050231, WO 2014158014 A1 (US 20160039990 A1).

Nofar, 2012, Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA, Polymer, 53, 3341, 10.1016/j.polymer.2012.04.054

Nofar, 2014, Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He, Polymer

Nofar, 2014, The thermal behavior of polylactide with different d-lactide content in the presence of dissolved CO2, Macromol. Mater. Eng., 299, 1232, 10.1002/mame.201300474

Nofar, 2013, Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures, Polymer, 54, 2382, 10.1016/j.polymer.2013.02.049

Najafi, 2014, Rheological and foaming behavior of linear and branched polylactides, Rheol. Acta, 53, 779, 10.1007/s00397-014-0801-3

Nofar, 2011, Crystallization kinetics of linear and long-chain-branched polylactide, Ind. Eng. Chem. Res., 50, 13789, 10.1021/ie2011966

Wang, 2012, Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity, Chem. Eng. Sci., 75, 390, 10.1016/j.ces.2012.02.051

Nofar, 2018, Rheological, thermal, and foaming behaviors of different polylactide grades, Int. J. Mater. Sci. Res., 1, 16, 10.18689/ijmsr-1000103

Liao, 2012, Solvent free generation of open and skinless foam in poly(l-lactic acid)/poly(d,l-lactic acid) blends using carbon dioxide, Ind. Eng. Chem. Res., 51, 6722, 10.1021/ie3000997

Pavia, 2012, Polymeric scaffolds based on blends of poly-l-lactic acid (PLLA) with poly-d-l-lactic acid (PLA) prepared via thermally induced phase separation (TIPS): demixing conditions and morphology, Polym. Bull., 70, 563, 10.1007/s00289-012-0861-4

Jia, 2015, Cell morphology and improved heat resistance of microcellular poly(l-lactide) foam via introducing stereocomplex crystallites of PLA, Ind. Eng. Chem. Res., 54, 2476, 10.1021/ie504345y

Wang, 2017, Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging, Chem. Eng., 327, 1151, 10.1016/j.cej.2017.07.024

Preechawong, 2005, Preparation and characterization of starch/poly(l-lactic acid) hybrid foams, Carbohydr. Polym., 59, 329, 10.1016/j.carbpol.2004.10.003

Mihai, 2007, Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends, Macromol. Biosci., 7, 907, 10.1002/mabi.200700080

Zhang, 2007, Biodegradable foams of poly(lactic acid)/starch. I. Extrusion condition and cellular size distribution, J. Appl. Polym. Sci., 106, 857, 10.1002/app.26715

Zhang, 2007, Biodegradable foams of poly(lactic acid)/starch. II. Cellular structure and water resistance, J. Appl. Polym. Sci., 106, 3058, 10.1002/app.26697

Hao, 2008, Study of different effects on foaming process of biodegradable PLA/starch composites in supercritical/compressed carbon dioxide, J. Appl. Polym. Sci., 109, 2679, 10.1002/app.27861

Lee, 2008, Preparation and characterization of tapioca starch-poly(lactic acid)-Cloisite NA nanocomposite foams, J. Appl. Polym. Sci., 110, 2337, 10.1002/app.27730

Lee, 2009, Tapioca starch-poly(lactic acid)-Cloisite 30B nanocomposite foams, Polym. Compos., 30, 665, 10.1002/pc.20664

Teixeira, 2014, Starch/fiber/poly(lactic acid) foam and compressed foam composites, RSC Adv., 4, 6616, 10.1039/c3ra47395c

Yuan, 2009, Preparation, characterization, and foaming behavior of poly(lactic acid)/poly(butylene adipate-co-butylene terephthalate) blend, Polym. Eng. Sci., 49, 1004, 10.1002/pen.21287

Pilla, 2010, Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends, Mater. Sci. Eng. C, 30, 255, 10.1016/j.msec.2009.10.010

Li, 2011, Effects of nanoclay on the morphology and physical properties of solid and microcellular injection molded polyactide/poly(butylenes adipate-co-terephthalate) (PLA/PBAT) nanocomposites and blends, J. Biobaased Mater. Bioenergy, 5, 442, 10.1166/jbmb.2011.1182

Shi, 2016, Microcellular foaming of polylactide and poly(butylene adipate-co-terphathalate) blends and their CaCO3 reinforced nanocomposites using supercritical carbon dioxide, Polym. Adv. Technol., 27, 550, 10.1002/pat.3768

Zhang, 2017, Enhancing the melt strength of poly(lactic acid) via microcrosslinking and blending with poly (butylene adipate-co-butylene terephthalate) for the preparation of foam, J. Polym. Environ., 25, 1335, 10.1007/s10924-016-0911-3

Kang, 2018, Preparation of open-porous stereocomplex PLA/PBAT scaffolds and correlation between their morphology, mechanical behavior, and cell compatibility, RSC Adv., 8, 12933, 10.1039/C8RA01305E

Shi, 2018, Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate-co-terephthalate) blends, RSC Adv., 8, 11850, 10.1039/C8RA01570H

Zhao, 2013, Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends, Ind. Eng. Chem. Res., 52, 2569, 10.1021/ie301573y

Guan, 2013, Fabrication and characterization of PLA/PHBV-chitin nanocomposites and their foams, J. Polym. Environ., 22, 119, 10.1007/s10924-013-0625-8

Ji, 2012, Fabrication of poly-dl-lactide/polyethylene glycol scaffolds using the gas foaming technique, Acta Biomater., 8, 570, 10.1016/j.actbio.2011.09.028

Zhang, 2013, Processing and characterization of supercritical CO2 batch foamed poly(lactic acid)/poly(ethylene glycol) scaffold for tissue engineering application, J. Appl. Polym. Sci., 130, 3066, 10.1002/app.39523

Chen, 2015, Fabrication of polylactic acid/polyethylene glycol (PLA/PEG) porous scaffold by supercritical CO2 foaming and particle leaching, Polym. Eng. Sci., 55, 1339, 10.1002/pen.24073

Wang, 2013, Study on the effect of dispersion phase morphology on porous structure of poly (lactic acid)/poly (ethylene terephthalate glycol-modified) blending foams, Polymer, 54, 5839, 10.1016/j.polymer.2013.08.050

Ma, 2012, Preparation and foaming extrusion behavior of polylactide acid/polybutylene succinate/montmorillonoid nanocomposite, J. Cell. Plast., 48, 191, 10.1177/0021955X11434182

Zhou, 2014, Mechanical properties of PLA/PBS foamed composites reinforced by organophilic montmorillonite, J. Appl. Polym. Sci., 131, 10.1002/app.40773

Yu, 2015, Effect of poly(butylenes succinate) on poly(lactic acid) foaming behavior: formation of open cell structure, Ind. Eng. Chem. Res., 54, 6199, 10.1021/acs.iecr.5b00477

Shi, 2018, Effect of poly(butylenes succinate) on the microcellular foaming of polylactide using supercritical carbon dioxide, J. Polym. Res., 25, 10.1007/s10965-018-1620-5

Zhao, 2016, Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends, J. Mech. Behav. Biomed. Mater., 53, 59, 10.1016/j.jmbbm.2015.08.002

Zhao, 2016, Microcellular injection molded polylactic acid/poly (ε-caprolactone) blends with supercritical CO2: correlation between rheological properties and their foaming behavior, Polym. Eng. Sci., 56, 939, 10.1002/pen.24323

Lv, 2018, Fabrication of novel open-cell foams of poly(ε-caprolactone)/poly(lactic acid) blends for tissue-engineering scaffolds, Ind. Eng. Chem. Res., 57, 12951, 10.1021/acs.iecr.8b02233

Pradeep, 2017, Investigation of thermal and thermomechanical properties of biodegradable PLA/PBSA composites processed via supercritical fluid-assisted foam injection molding, Polymers, 9, 22, 10.3390/polym9010022

Kramschuster, 2009, An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds, J. Biomed. Mater. Res. B Appl. Biomater., 9999B, 366

Yao, 2007, Physical characteristics of PLLA/PMMA blends and their CO2 blowing foams, J. Cell. Plast., 43, 385, 10.1177/0021955X07079209

Velasco, 2010, Preparation in supercritical CO2 of porous poly(methyl methacrylate)–poly(l-lactic acid) (PMMA–PLA) scaffolds incorporating ibuprofen, J. Supercrit. Fluids, 54, 335, 10.1016/j.supflu.2010.05.012

Kohlhoff, 2011, Open cell microcellular foams of polylactic acid (PLA)-based blends with semi-interpenetrating polymer networks, Macromol. Mater. Eng., 296, 770, 10.1002/mame.201000371

Zhou, 2011, Fabrication of tissue engineering scaffolds through solid-state foaming of immiscible polymer blends, Biofabrication, 3, 10.1088/1758-5082/3/4/045003

Liao, 2014, Unique interfacial and confined porous morphology of PLA/PS blends in supercritical carbon dioxide, RSC Adv., 4, 45109, 10.1039/C4RA07592G

Tang, 2011, Autoclave preparation of expanded polypropylene/poly(lactic acid) blend bead foams with a batch foaming process, J. Cell. Plast., 47, 429, 10.1177/0021955X11406004

Bao, 2013, Preparation of nanocellular foams from polycarbonate/poly(lactic acid) blend by using supercritical carbon dioxide, J. Polym. Res., 20, 10.1007/s10965-013-0290-6

Yoon, 2015, Solid heat-expandable polylactide-poly(methyl methacrylate) foam precursors prepared by immersion in liquid carbon dioxide, J. Mater. Sci., 50, 7208, 10.1007/s10853-015-9275-7

Zhao, 2017, Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid), Polym. Degrad. Stab., 146, 277, 10.1016/j.polymdegradstab.2017.11.003

Zhou, 2018, Thermal and rheological properties of poly(lactic acid)/low-density polyethylene blends and their supercritical CO2 foaming behavior, J. Polym. Environ., 26, 3564, 10.1007/s10924-018-1240-5

Mi, 2013, Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding, Mater. Sci. Eng. C, 33, 4767, 10.1016/j.msec.2013.07.037

Barmouz, 2017, Statistical and experimental investigation on low density microcellular foaming of PLA-TPU/cellulose nano-fiber bio-nanocomposites, Polym. Test., 61, 300, 10.1016/j.polymertesting.2017.05.032

Barmouz, 2018, Foaming and thermal characteristics of bio-based polylactic acid–thermoplastic polyurethane blends, J. Cell. Plast., 54, 931, 10.1177/0021955X18793841

Song, 2015, Design and characterization of biocompatible shape memory polymer (SMP) blend foams with a dynamic porous structure, Polymer, 56, 82, 10.1016/j.polymer.2014.09.062

Jia, 2015, Foaming and damping properties of ethylene vinyl-acetate copolymer/polylactic acid blends, J. Macromol. Sci., Part B: Phys., 54, 190, 10.1080/00222348.2014.998556

Han, 2016, Properties of acrylonitrile butadiene rubber (NBR)/poly(lactic acid) (PLA) blends and their foams, Compos. Interfaces, 23, 771, 10.1080/09276440.2016.1170518