Poly (lactic acid) blends: Processing, properties and applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Garlotta, 2002, A literature review of poly (lactic acid), J. Poly. Environ., 9, 63, 10.1023/A:1020200822435
Sinclair, 1996, The case for polylactic acid as a commodity packaging plastic, J. Macromol. Sci., Part A: Pure Appl. Chem., 33, 33, 10.1080/10601329608010880
Grijpma, 1994, (Co)polymers of l-lactide, 2. Mechanical properties, Macromol. Chem. Phys., 195, 1649, 10.1002/macp.1994.021950516
Auras, 2014, An overview of polylactides as packaging materials, Macromol. Biosci., 4, 835, 10.1002/mabi.200400043
Drumright, 2000, Polylactic acid technology, Adv. Mater., 12, 1841, 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
Nofar, 2014, Poly (lactic acid) foaming, Prog. Polym. Sci., 39, 1721, 10.1016/j.progpolymsci.2014.04.001
Gupta, 2007, Poly (lactic acid) fiber: an overview, Prog. Polym. Sci., 32, 455, 10.1016/j.progpolymsci.2007.01.005
Lunt, 1998, Large-scale production, properties and commercial applications of polylactic acid polymers, Polym. Degrad. Stab., 59, 145, 10.1016/S0141-3910(97)00148-1
Saini, 2016, Poly(lactic acid) blends in biomedical applications, Adv. Drug Deliv. Rev., 107, 47, 10.1016/j.addr.2016.06.014
Mikos, 1994, Wetting of poly(l-lactic acid) and poly(d,l-lactic-co-glycolic acid) foams for tissue culture, Biomaterials, 15, 55, 10.1016/0142-9612(94)90197-X
Jung, 2005, A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering, Biomaterials, 26, 6314, 10.1016/j.biomaterials.2005.04.007
Lim, 2008, Processing technologies for poly (lactic acid), Prog. Polym. Sci., 33, 820, 10.1016/j.progpolymsci.2008.05.004
Saeidlou, 2012, Poly (lactic acid) crystallization, Prog. Polym. Sci., 37, 1657, 10.1016/j.progpolymsci.2012.07.005
Rasal, 2010, Poly (lactic acid) modifications, Prog. Polym. Sci., 35, 338, 10.1016/j.progpolymsci.2009.12.003
Dorgan, 2005, Melt rheology of variable L-content poly(lactic acid), J. Rheol., 49, 607, 10.1122/1.1896957
Dorgan, 1999, Melt rheology of poly(lactic acid), entanglement and chainarchitecture effects, J. Rheol., 43, 1141, 10.1122/1.551041
Grijpma, 1991, High molecular weight copolymers of l-lactide and ε-caprolactone as biodegradable elastomeric implant materials, Polym. Bull., 25, 327, 10.1007/BF00316902
Grijpma, 1994, Rubber toughening of poly(lactide) by blending and block copolymerization, Polym. Eng. Sci., 34, 1674, 10.1002/pen.760342205
Fan, 2018, An injectable oxygen release system to augment cell survival and promote cardiac repair following myocardial infarction, Sci. Rep., 8, 1371, 10.1038/s41598-018-19906-w
Fan, 2017, Sustained release of a peptide-based matrix metalloproteinase-2 inhibitor to attenuate adverse cardiac remodeling and improve cardiac function following myocardial infarction, Biomacromolecules, 18, 2820, 10.1021/acs.biomac.7b00760
Macosko, 2000, Morphology development and control in immiscible polymer blends, Macromol. Symp., 149, 171, 10.1002/1521-3900(200001)149:1<171::AID-MASY171>3.0.CO;2-8
Favis, 1991, Polymer alloys and blends: recent advances, Can. J. Chem. Eng., 69, 619, 10.1002/cjce.5450690303
Yu, 2006, Polymer blends and composites from renewable resources, Prog. Polym. Sci., 31, 576, 10.1016/j.progpolymsci.2006.03.002
Sarazin, 2008, Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch, Polymer, 49, 599, 10.1016/j.polymer.2007.11.029
Liu, 2011, Interaction of microstructure and interfacial adhesion on impact performance of Polylactide (PLA) ternary blends, Macromolecules, 44, 1513, 10.1021/ma1026934
Arrighi, 2016, Miscibility criterion in polymer blend and its determination, 153
Favis, 1991, Factors influencing structure formation and phase size in an immiscible polymer blend of polycarbonate and polypropylene prepared by twin-screw extrusion, Polymer, 32, 1474, 10.1016/0032-3861(91)90429-M
Favis, 1987, The effect of viscosity ratio on the morphology of polypropylene/polycarbonate blends during processing, Polym. Eng. Sci., 27, 1591, 10.1002/pen.760272105
Scott, 1991, Model experiments concerning morphology development during the initial stages of polymer blending, Polym. Bull., 26, 341, 10.1007/BF00587979
Sundararaj, 1995, Milligrams to kilograms: an evaluation of mixers for reactive polymer blending, Polym. Eng. Sci., 35, 100, 10.1002/pen.760350113
Souza, 2002, Influence of coalescence and interfacial tension on the morphology of PP/HDPE compatibilized blends, Polymer, 43, 3959, 10.1016/S0032-3861(02)00223-9
Maani, 2012, Rheological and morphological properties of reactively compatibilized thermoplastic olefin (TPO) blends, J. Rheol., 56, 625, 10.1122/1.3700966
Dil, 2015, Localization of micro- and nano-silica particles in heterophase poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends, Polymer, 76, 295, 10.1016/j.polymer.2015.08.046
Huitric, 2007, Effect of reactive compatibilization on droplet coalescence in shear flow, J. Non-Newtonian Fluid Mech., 145, 139, 10.1016/j.jnnfm.2007.06.001
Puyvelde, 2008, Review on morphology development of immiscible blends in confined shear flow, Polymer, 49, 5363, 10.1016/j.polymer.2008.08.055
Wu, 1982
Nofar, 2016, Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow, Polymer, 98, 353, 10.1016/j.polymer.2016.06.044
Sumita, 1991, Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black, Polym. Bull., 25, 265, 10.1007/BF00310802
Taghizadeh, 2013, Carbon nanotubes in blends of polycaprolactone/thermoplastic starch, Carbohydr. Polym., 98, 189, 10.1016/j.carbpol.2013.05.024
Harkins, 1922, Films. The spreading of liquids and the spreading coefficient, J. Am. Chem. Soc., 44, 2665, 10.1021/ja01433a001
Harkins, 1941, A general thermodynamic theory of the spreading of liquids to form duplex films and of liquids or solids to form monolayers, J. Chem. Phys., 9, 552, 10.1063/1.1750953
Binks, 2002, Solid wettability from surface energy components: relevance to pickering emulsions, Langmuir, 18, 1270, 10.1021/la011420k
Ravati, 2013, Tunable morphologies for ternary blends with poly(butylene succinate): partial and complete wetting phenomena, Polymer, 54, 3271, 10.1016/j.polymer.2013.04.005
Zhang, 2007, Ultralow percolation thresholds in ternary cocontinuous polymer blends, Macromolecules, 40, 8817, 10.1021/ma0716480
Ravati, 2013, Interfacial coarsening of ternary polymer blends with partial and complete wetting structures, Polymer, 54, 6739, 10.1016/j.polymer.2013.10.009
Gruber, 1992
Ding, 2015, Rheology, thermal properties, and foaming behavior of high d-content polylactic acid/cellulose nanofiber composites, RSC Adv., 5, 91544, 10.1039/C5RA16901A
Ikada, 1987, Stereocomplex formation between enantiomeric poly(lactides), Macromolecules, 20, 904, 10.1021/ma00170a034
Okihara, 1991, Crystal structure of stereocomplex of poly(l-lactide) and poly(d-lactide), J. Macromol. Sci., Part B: Phys., 30, 119, 10.1080/00222349108245788
Tsuji, 2016, Poly(lactic acid) stereocomplexes: a decade of progress, Adv. Drug Deliv. Rev., 107, 97, 10.1016/j.addr.2016.04.017
Tsuji, 2007, Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications, Macromol. Biosci., 7, 10.1002/mabi.200700275
Fukushima, 2006, Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application, Polym. Int., 55, 626, 10.1002/pi.2010
Jing, 2016, A mini review on the functional biomaterials based on poly(lactic acid) Stereocomplex, Polym. Rev., 56, 262, 10.1080/15583724.2015.1111380
Tsuji, 2010, Water vapor permeability of poly(l-lactide)/poly(d-lactide) stereocomplexes, Macromol. Mater. Eng., 295, 709, 10.1002/mame.201000071
Fischer, 1973, Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions, Aktuelle Probleme Der Polymer-Physik IV Akt, Prob. Der. Polym. Phys., 980
Sarasua, 1998, Crystallization and melting behavior of polylactides, Macromolecules, 31, 3895, 10.1021/ma971545p
Sarasua, 2005, Stereoselective crystallization and specific interactions in polylactides, Macromolecules, 38, 8362, 10.1021/ma051266z
Sarasua, 2005, Crystallinity and mechanical properties of optically pure polylactides and their blends, Polym. Eng. Sci., 45, 745, 10.1002/pen.20331
Loomis, 1990, Polylactide stereocomplexes, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 31, 55
Tsuji, 1992, Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high-resolution solid-state carbon-13 NMR spectroscopy, Macromolecules, 25, 4114, 10.1021/ma00042a011
Wang, 2007, Stereocomplexation and morphology of enantiomeric poly(lactic acid)s with moderate-molecular-weight, J. Appl. Polym. Sci., 107, 1621, 10.1002/app.27260
Schmidt, 2001, Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide, J. Polym. Sci. B Polym. Phys., 39, 300, 10.1002/1099-0488(20010201)39:3<300::AID-POLB1002>3.0.CO;2-M
Yamane, 2003, Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid), Polymer, 44, 2569, 10.1016/S0032-3861(03)00092-2
Maillard, 2010, Differences between crystals obtained in PLLA-rich or PDLA-rich stereocomplex mixtures, Macromolecules, 43, 4006, 10.1021/ma902625p
Tsuji, 1999, Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films, Polymer, 40, 6699, 10.1016/S0032-3861(99)00004-X
Doi, 2002, Polyesters III: applications and commercial products
Srithep, 2015, Injection molding and characterization of polylactide stereocomplex, Polym. Degrad. Stab., 120, 290, 10.1016/j.polymdegradstab.2015.07.017
Saeidlou, 2012, Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes, Polymer, 53, 5816, 10.1016/j.polymer.2012.10.030
Saeidlou, 2014, Poly(lactic acid) stereocomplex formation: application to PLA rheological property modification, J. Appl. Polym. Sci., 131, 41073, 10.1002/app.41073
Wei, 2014, Stereocomplex crystallite network in asymmetric PLLA/PDLA blends: formation, structure, and confining effect on the crystallization rate of homocrystallites, Macromolecules, 47, 1439, 10.1021/ma402653a
Tsuji, 2003, Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending, Polymer, 44, 2891, 10.1016/S0032-3861(03)00175-7
Jacobsen, 1996, Filling of poly(lactic acid) with native starch, Polym. Eng. Sci., 36, 2799, 10.1002/pen.10680
Biresaw, 2001, Correlation between mechanical adhesion and interfacial properties of starch/biodegradable polyester blends, J. Polym. Phys. Part. B, 39, 920, 10.1002/polb.1067
Ke, 2003, Blending of poly(lactic acid) and starches containing varying amylose content, J. Appl. Polym. Sci., 89, 3639, 10.1002/app.12617
Ke, 2001, Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends, J. Appl. Polym. Sci., 81, 3069, 10.1002/app.1758
Ke, 2003, Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites, J. Appl. Polym. Sci., 89, 1203, 10.1002/app.12162
Zhang, 2004, Mechanical properties and crystallization behavior of poly(lactic acid) blended with dendritic hyperbranched polymer, Polym. Int., 53, 716, 10.1002/pi.1457
Park, 1999, Biodegradable polymer blends of poly (lactid acid) and starch, Korea Polym. J., 7, 93
Kozlowski, 2007, Biodegradable blends of poly(l-lactide) and starch, J. Appl. Polym. Sci., 105, 269, 10.1002/app.26088
Yu, 2015, Plasticizing effect of poly(ethylene glycol)s with different molecular weights in poly(lactic acid)/starch blends, J. Appl. Polym. Sci., 132, 41808, 10.1002/app.41808
Jariyasakoolroj, 2014, Silane modified starch for compatible reactive blend with poly(lactic acid), Carbohydr. Polym., 106, 255, 10.1016/j.carbpol.2014.02.018
Jun, 2000, Reactive blending of biodegradable polymers: PLA and starch, J. Polym. Environ., 8, 33, 10.1023/A:1010172112118
Xiong, 2013, Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil, Carbohydr. Polym., 92, 810, 10.1016/j.carbpol.2012.09.007
Wang, 2001, Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate, J. Appl. Polym. Sci., 82, 1761, 10.1002/app.2018
Wang, 2002, Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate, J. Appl. Polym. Sci., 84, 1257, 10.1002/app.10457
Wang, 2002, Effects of starch moisture on properties of wheat starch/poly(lactic acid) blend containing methylenediphenyl diisocyanate, J. Polym. Environ., 10, 133, 10.1023/A:1021139903549
Ke, 2003, Thermal and mechanical properties of poly(lactic acid)/starch/methylenediphenyl diisocyanate blending with triethyl citrate, J. Appl. Polym. Sci., 88, 2947, 10.1002/app.12112
Wang, 2003, Properties of poly(lactic acid) blends with various starches as affected by physical aging, J. Appl. Polym. Sci., 90, 3683, 10.1002/app.13001
Yu, 2010, Enhancing compatibilizer function by controlled distribution in hydrophobic polylactic acid/hydrophilic starch blends, J. Appl. Polym. Sci., 119, 2189, 10.1002/app.32949
Zhang, 2004, Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride, Biomacromolecules, 5, 1446, 10.1021/bm0400022
Zhang, 2004, Physical characterization of coupled poly(lactic acid)/starch/maleic anhydride blends plasticized by acetyl triethyl citrate, Macromol. Biosci., 4, 1053, 10.1002/mabi.200400076
Orozco, 2009, Preparation and characterization of poly(lactic acid)-g-maleic anhydridestarch blends, Macromol. Symp., 277, 69, 10.1002/masy.200950309
Wu, 2005, Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid - characterization and biodegradability assessment, Macromol. Biosci., 5, 352, 10.1002/mabi.200400159
Schwach, 2008, Biodegradable blends based on starch and poly(lactic acid): comparison of different strategies and estimate of compatibilization, J. Polym. Environ., 16, 286, 10.1007/s10924-008-0107-6
Liu, 2012, Grafting of glycidyl methacrylate onto poly(lactide) and properties of PLA/starch blends compatibilized by the grafted copolymer, J. Polym. Environ., 20, 810, 10.1007/s10924-012-0438-1
Xiong, 2013, The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride, Carbohydr. Polym., 95, 77, 10.1016/j.carbpol.2013.02.054
Xiong, 2013, Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends, Carbohydr. Polym., 94, 235, 10.1016/j.carbpol.2013.01.038
Li, 2016, Preparation and characterization of acorn starch/poly(lactic acid) composites modified with functionalized vegetable oil derivates, Carbohydr. Polym., 142, 250, 10.1016/j.carbpol.2016.01.031
Zhang, 2004, Mechanical and thermal properties of poly (lactic acid)/starch blends with dioctyl maleate, J. Appl. Polym. Sci., 94, 1697, 10.1002/app.21078
Gattin, 2002, Biodegradation study of a starch and poly (lacticacid) co-extruded material in liquid, composting and inert mineral media, Int. Biodeterior. Biodegrad., 50, 25, 10.1016/S0964-8305(02)00039-2
Yew, 2005, Water absorption and enzymatic degradation of poly (lactic acid)/rice starch composites, Polym. Degrad. Stab., 90, 488, 10.1016/j.polymdegradstab.2005.04.006
Zuo, 2015, Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites, Int. J. Biol. Macromol., 72, 391, 10.1016/j.ijbiomac.2014.08.038
Acioli-Moura, 2008, Thermal degradation and physical aging of poly(lactic acid) and its blends with starch, Polym. Eng. Sci., 48, 829, 10.1002/pen.21019
Ohkita, 2006, Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites, J. Appl. Polym. Sci., 100, 3009, 10.1002/app.23425
Lv, 2015, Effect of annealing on the thermal properties of poly (lactic acid)/starch blends, Int. J. Biol. Macromol., 74, 297, 10.1016/j.ijbiomac.2014.12.022
Réti, 2008, Flammability properties of intumescent PLA including starch and lignin, Polym. Adv. Technol., 19, 628, 10.1002/pat.1130
Wang, 2011, Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites, Ind. Eng. Chem. Res., 50, 713, 10.1021/ie1017157
Shen, 2013, Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal, Bioresour. Technol., 131, 33, 10.1016/j.biortech.2012.12.169
Hwang, 2013, Migration of α-tocopherol and resveratrol from poly(l-lactic acid)/starch blends films into ethanol, J. Food Eng., 116, 814, 10.1016/j.jfoodeng.2013.01.032
Sanyang, 2016, Development and characterization of sugar palm starch and poly(lactic acid) bilayer films, Carbohydr. Polym., 146, 36, 10.1016/j.carbpol.2016.03.051
Zhang, 2013, Novel toughening mechanism for polylactic acid (PLA)/starch blends with layer-like microstructure via pressure-induced flow (PIF) processing, Mater. Lett., 98, 238, 10.1016/j.matlet.2012.12.019
Bolay, 2012, How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer – Co-grinding enhances use properties of renewable PLA–starch composites, Chem. Eng. Process. Process Intensif., 56, 1, 10.1016/j.cep.2012.03.005
Wuk Park, 2000, Biodegradable polymer blends of poly (l-lactic acid) and gelatinized starch, Polym. Eng. Sci., 40, 2539, 10.1002/pen.11384
Shin, 2007, Morphology and rheology on the blends of PLA/CMPS, Macromol. Res., 15, 291, 10.1007/BF03218790
Chapleau, 2007, Biaxial orientation of polylactide/thermoplastic starch blends, Int. Polym. Process., 22, 412, 10.3139/217.2070
Huneault, 2007, Morphology and properties of compatibilized polylactide/thermoplastic starch blends, Polymer, 48, 270, 10.1016/j.polymer.2006.11.023
Wang, 2007, Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion, Polym. Int., 56, 1440, 10.1002/pi.2302
Ren, 2009, Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate), Carbohydr. Polym., 77, 576, 10.1016/j.carbpol.2009.01.024
Leadprathom, 2010, Compatibilized polylactic acid/thermoplastic starch by reactive blend, J. Met. Mater. Miner., 20, 87
Yu, 2007, Effect of compatibilizer distribution on the blends of starch/biodegradable polyesters, J. Appl. Polym. Sci., 103, 812, 10.1002/app.25184
Ning, 2008, Preparation and characterization of compatible thermoplastic dry starch/poly (lactic acid), Polym. Compos., 29, 551, 10.1002/pc.20399
Wang, 2008, Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends, Carbohydr. Polym., 71, 109, 10.1016/j.carbpol.2007.05.025
Yang, 2015, Preparation and characterization of thermoplastic starches and their blends with poly (lactic acid), Int. J. Biol. Macromol., 77, 273, 10.1016/j.ijbiomac.2015.03.053
Akrami, 2016, A new approach in compatibilization of the poly (lactic acid)/thermoplastic starch (PLA/TPS) blends, Carbohydr. Polym., 144, 254, 10.1016/j.carbpol.2016.02.035
Gao, 2011, Mechanical, thermal, and biodegradability properties of PLA/modified starch blends, Polym. Compos., 32, 2093, 10.1002/pc.21241
Shin, 2011, Thermal, morphological, and mechanical properties of biobased and biodegradable blends of poly (lactic acid) and chemically modified thermoplastic starch, Polym. Eng. Sci., 51, 826, 10.1002/pen.21896
Wang, 2007, Influence of citric acid on the properties of glycerol-plasticized dry starch (DTPS) and DTPS/poly (lactic acid) blends, Starch-Starke, 59, 409, 10.1002/star.200700617
Ferri, 2016, The effect of maleinized linseed oil (MLO) on mechanical performance of poly (lactic acid)-thermoplastic starch (PLA-TPS) blends, Carbohydr. Polym., 147, 60, 10.1016/j.carbpol.2016.03.082
Yokesahachart, 2011, Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly (lactic acid), Carbohydr. Polym., 83, 22, 10.1016/j.carbpol.2010.07.020
Shirai, 2015, Adipate and citrate esters as plasticizers for poly (lactic acid)/thermoplastic starch sheets, J. Polym. Environ., 23, 54, 10.1007/s10924-014-0680-9
Li, 2011, Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends, J. Appl. Polym. Sci., 119, 2439, 10.1002/app.32956
Li, 2011, Effect of chain extension on the properties of PLA/TPS blends, J. Appl. Polym. Sci., 122, 134, 10.1002/app.33981
Wootthikanokkhan, 2012, Effect of blending conditions on mechanical, thermal, and rheological properties of plasticized poly (lactic acid)/maleated thermoplastic starch blends, J. Appl. Polym. Sci., 124, 1012, 10.1002/app.35142
Phetwarotai, 2013, Biodegradation of polylactide and gelatinized starch blend films under controlled soil burial conditions, J. Polym. Environ., 21, 95, 10.1007/s10924-012-0530-6
Thunga, 2014, Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers, Carbon, 68, 159, 10.1016/j.carbon.2013.10.075
Wang, 2015, Low cost carbon fibers from bio-renewable lignin/poly (lactic acid) (PLA) blends, Compos. Sci. Technol., 119, 20, 10.1016/j.compscitech.2015.09.021
Gordobil, 2014, Physicochemical properties of PLA lignin blends, Polym. Degrad. Stab., 108, 330, 10.1016/j.polymdegradstab.2014.01.002
Gordobil, 2015, Kraft lignin as filler in PLA to improve ductility and thermal properties, Ind. Crop. Prod., 72, 46, 10.1016/j.indcrop.2015.01.055
Anwer, 2015, Comparison of the thermal, dynamic mechanical and morphological properties of PLA-Lignin & PLA-Tannin particulate green composites, Compos. Part B, 82, 92, 10.1016/j.compositesb.2015.08.028
Spiridon, 2015, Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering, Compos. Part B, 69, 342, 10.1016/j.compositesb.2014.10.006
Singla, 2016, Crystallization, morphological, and mechanical response of poly (lactic acid)/lignin-based biodegradable composites, polymer-plastics, Technol. Eng., 55, 475
Kim, 2014, Effect of alkyl-chain-modified lignin in the PLA matrix, Fibers Polym., 15, 2458, 10.1007/s12221-014-2458-z
Bugnicourt, 2014, Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging, Express Polym Lett, 8, 791, 10.3144/expresspolymlett.2014.82
Zhao, 2012, Phase morphology, physical properties, and biodegradation behavior of novel PLA/PHBHHx blends, J Biomed Mater Res B Appl Biomater, 100, 23, 10.1002/jbm.b.31915
Abdelwahab, 2012, Thermal, mechanical and morphological characterization of plasticized PLA/PHB blends, Polym. Degrad. Stab., 97, 1822, 10.1016/j.polymdegradstab.2012.05.036
Ferreira, 2002, Films of PLLA/PHBV: thermal, morphological, and mechanical characterization, J. Appl. Polym. Sci., 86, 2898, 10.1002/app.11334
Richards, 2008, Biodegradable composite foams of PLA and PHBV using subcritical CO2, J. Polym. Environ., 16, 258, 10.1007/s10924-008-0110-y
Blümm, 1995, Miscibility, crystallization, and melting of poly(3-hydroxybutyrate)/poly(l-lactide blends), Polymer, 36, 4077, 10.1016/0032-3861(95)90987-D
Koyama, 1997, Miscibility of binary blends of poly[(R)-3-ydroxybutyric acid] and poly[(S)-Iactic acid], Polymer, 38, 1589, 10.1016/S0032-3861(96)00685-4
Zhang, 2006, Crystallization behaviors of poly(3-hydroxybutyrate) and poly(l-lactic acid) in their immiscible and miscible blends, J. Phys. Chem., 110, 24463, 10.1021/jp065233c
Ohkoshia, 2000, Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate], Polymer, 41, 5985, 10.1016/S0032-3861(99)00781-8
Zhang, 1996, Miscibility, crystallization, and morphology of poly(β-hydroxybutyrate)/poly(d,l-lactide) blends, Polymer, 37, 235, 10.1016/0032-3861(96)81093-7
Kikkawa, 2006, Phase structure and enzymatic degradation of poly(L-lactide)/atactic poly(3-hydroxybutyrate) blends: an atomic force microscopy study, Biomacromolecules, 7, 1921, 10.1021/bm0600163
Kikkawa, 2009, Effect of phase structure on enzymatic degradation in poly(l-lactide)/atactic poly(3-hydroxybutyrate) blends with different miscibility, Biomacromolecules, 10, 1013, 10.1021/bm900117j
Bonartsev, 2012, Hydrolytic degradation of poly(3-hydroxybutyrate), polylactide and their derivatives: kinetics, crystallinity, and surface morphology, Mol. Cryst. Liq. Cryst., 556, 288, 10.1080/15421406.2012.635982
Zhang, 2011, Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties, Adv. Polym. Technol., 30, 67, 10.1002/adv.20235
Bartczak, 2013, Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate)–morphology and properties, Eur. Polym. J., 49, 3630, 10.1016/j.eurpolymj.2013.07.033
Musioł, 2016, (Bio)degradable polymers as a potential material for food packaging: studies on the (bio)degradation process of PLA/(R,S)-PHB rigid foils under industrial composting conditions, Eur. Food Res. Technol., 242, 815, 10.1007/s00217-015-2611-y
Dong, 2013, Effect of partial crosslinking on morphology and properties of the poly(b-hydroxybutyrate)/poly(d,l-lactic acid) blends, Polym. Degrad. Stab., 98, 1549, 10.1016/j.polymdegradstab.2013.06.033
Armentano, 2015, Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems, Express Polym Lett, 9, 583, 10.3144/expresspolymlett.2015.55
Armentano, 2015, Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems, Express Polym Lett, 9, 583, 10.3144/expresspolymlett.2015.55
Arrieta, 2014, Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications, Eur. Polym. J., 50, 255, 10.1016/j.eurpolymj.2013.11.009
Arrieta, 2014, Disintegrability under composting conditions of plasticized PLA/PHB blends, Polym. Degrad. Stab., 108, 307, 10.1016/j.polymdegradstab.2014.01.034
Arrieta, 2014, Plasticized poly(lactic acid)−poly(hydroxybutyrate) (PLA−PHB) blends incorporated with catechin intended for active food-packaging applications, J. Agric. Food Chem., 62, 10170, 10.1021/jf5029812
Arrieta, 2015, Development of flexible materials based on plasticized electrospun PLA–PHB blends: structural, thermal, mechanical and disintegration properties, Eur. Polym. J., 73, 433, 10.1016/j.eurpolymj.2015.10.036
Nicosia, 2015, Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid, Sep. Purif. Technol., 154, 154, 10.1016/j.seppur.2015.09.037
Han, 2012, Morphology and properties of biodegradable and biosourced polylactide blends with poly(3-hydroxybutyrate-co-4-hydroxybutyrate), Polym. Compos., 33, 850, 10.1002/pc.22213
Weng, 2013, Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments, Polym. Test., 32, 60, 10.1016/j.polymertesting.2012.09.014
Li, 2015, Non-isothermal crystallization of P(3HB-co-4HB)/PLA blends crystallization kinetic, melting behavior and crystal morphology, J. Therm. Anal. Calorim., 122, 817, 10.1007/s10973-015-4824-5
Iannace, 1994, Poly(3-hydroxybutyrate)-co-(3-hydroxyvalerate)/poly-l-lactide blends: thermal and mechanical properties, J. Appl. Polym. Sci., 54, 1525, 10.1002/app.1994.070541017
Iannace, 1995, Effect of degradation on the mechanical properties of multiphase polymer blends: PHBV/PLLA, J. Macromol. Sci. A, 32, 881, 10.1080/10601329508010301
Zembouai, 2014, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends: thermal stability, flammability and thermo-mechanical behavior, J. Polym. Environ., 22, 131, 10.1007/s10924-013-0626-7
Liu, 2015, Blends of polylactide and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with low content of hydroxyvalerate unit: morphology, structure, and property, J. Appl. Polym. Sci., 132, 42689, 10.1002/app.42689
Nanda, 2011, The Effects of Process Engineering on the Performance of PLA and PHBV Blends, Macromol. Mater. Eng., 296, 719, 10.1002/mame.201000417
Gerard, 2012, Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends, Eur. Polym. J., 48, 1110, 10.1016/j.eurpolymj.2012.03.015
Modi, 2012, Miscibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molecular weight poly(lactic acid) blends determined by thermal analysis, J. Appl. Polym. Sci., 124, 3074, 10.1002/app.35343
Boufarguine, 2013, PLA/PHBV films with improved mechanical and gas barrier properties, Macromol. Mater. Eng., 298, 1065, 10.1002/mame.201200285
Ma, 2013, Toughening of poly (lactic acid) by poly (b-hydroxybutyrate-co-b-hydroxyvalerate) with high b-hydroxyvalerate content, Eur. Polym. J., 49, 1523, 10.1016/j.eurpolymj.2013.01.016
Zembouai, 2013, A study of morphological, thermal, rheological and barrier properties of Poly(3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing, Polym. Test., 32, 842, 10.1016/j.polymertesting.2013.04.004
Yang, 2016, Transesterification induced mechanical properties enhancement of PLLA/PHBV bio-alloy, Polymer, 83, 230, 10.1016/j.polymer.2015.12.025
Gonzalez-Ausejo, 2017, Assessing the thermoformability of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (acid lactic) blends compatibilized with diisocyanates, Polym. Test., 62, 235, 10.1016/j.polymertesting.2017.06.026
Gonzalez-Ausejo, 2017, Assessing the thermoformability of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (acid lactic) blends compatibilized with diisocyanates, Polym. Test., 62, 235, 10.1016/j.polymertesting.2017.06.026
Gonzalez-Ausejo, 2017, Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)–poly(lactic acid) blends with diisocyanates, J. Appl. Polym. Sci., 134, 10.1002/app.44806
Qiang, 2018, Facile fabrication of 100% bio-based and degradable ternary cellulose/PHBV/PLA composite, Materials, 11, 330, 10.3390/ma11020330
He, 2014, Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures, J. Mater. Sci. Mater. Med., 25, 561, 10.1007/s10856-013-5073-4
Chang, 2016, Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: fabrication and characterization, Mater. Sci. Eng. C, 61, 396, 10.1016/j.msec.2015.12.074
Wagner, 2014, Analysis of porous electrospun fibers from poly(l-lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends, ACS Sustain. Chem. Eng., 2, 1976, 10.1021/sc5000495
Li, 2015, Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers, Polymer, 68, 183, 10.1016/j.polymer.2015.05.024
Rasal, 2009, Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization, J. Biomed. Mater. Res. A, 88, 1079, 10.1002/jbm.a.32009
Woodruff, 2010, The return of a forgotten polymer—polycaprolactone in the 21st century, Prog. Polym. Sci., 35, 1217, 10.1016/j.progpolymsci.2010.04.002
Kweon, 2003, A novel degradable polycaprolactone networks for tissue engineering, Biomaterials, 24, 801, 10.1016/S0142-9612(02)00370-8
Tsuji, 1996, Blends of aliphatic polyesters. I. Physical properties and morphologies of solution-cast blends from poly(dl-lactide) and poly(E-caprolactone), J. Appl. Polym. Sci., 60, 2367, 10.1002/(SICI)1097-4628(19960627)60:13<2367::AID-APP8>3.0.CO;2-C
Tsuji, 1998, Blends of aliphatic polyesters. II. Hydrolysis of solution-cast blends from poly(l-lactide) and poly(Ε-caprolactone) in phosphate-buffered solution, J. Appl. Polym. Sci., 67, 405, 10.1002/(SICI)1097-4628(19980118)67:3<405::AID-APP3>3.0.CO;2-Q
Fukushima, 2013, Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend, Eur. Polym. J., 49, 706, 10.1016/j.eurpolymj.2012.12.011
Liu, 2000, Selective enzymatic degradations of poly(l-lactide) and poly(ε-caprolactone) blend films, Biomacromolecules, 1, 350, 10.1021/bm000046k
Cai, 2002, In vitro study on the drug release behavior from polylactide-based blend matrices, Polym. Adv. Technol., 13, 534, 10.1002/pat.222
Li, 2003, Lipase-catalyzed biodegradation of poly(ε-caprolactone) blended with various polylactide-based polymers, Biomacromolecules, 4, 372, 10.1021/bm025748j
Sivalingam, 2004, Enzymatic and thermal degradation of poly(ε-caprolactone), poly(d,l-lactide), and their blends, Ind. Eng. Chem. Res., 43, 7702, 10.1021/ie049589r
Sivalingam, 2004, Thermal degradation of binary physical mixtures and copolymers of poly(3-caprolactone), poly(d,l-lactide), poly(glycolide), Polym. Degrad. Stab., 84, 393, 10.1016/j.polymdegradstab.2003.12.008
Gaona, 2012, Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction, Polym. Degrad. Stab., 97, 1621, 10.1016/j.polymdegradstab.2012.06.031
Vieira, 2011, Mechanical study of PLA–PCL fibers during in vitro degradation, J. Mech. Behav. Med. Mater., 4, 451
Kim, 2000, Effect of P(lLA-co-?CL) on the compatibility and crystallization behavior of PCL/PLLA blends, J. Appl. Polym. Sci., 77, 226, 10.1002/(SICI)1097-4628(20000705)77:1<226::AID-APP29>3.0.CO;2-8
Todo, 2007, Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends, Eng. Fract. Mech., 74, 1872, 10.1016/j.engfracmech.2006.05.021
Simões, 2009, Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends, J. Appl. Polym. Sci., 112, 345, 10.1002/app.29425
Noroozi, 2012, Thermorheological properties of poly (ε-caprolactone)/polylactide blends, Polym. Eng. Sci., 52, 2348, 10.1002/pen.23186
Sakai, 2009, Nucleation enhancement effect in poly(l-lactide) (PLLA)/poly(ϵ-caprolactone) (PCL) blend induced by locally activated chain mobility resulting from limited miscibility, Macromolecules, 42, 8335, 10.1021/ma901547a
Cock, 2013, Thermal, rheological and microstructural characterisation of commercial biodegradable polyesters, Polym. Test., 32, 716, 10.1016/j.polymertesting.2013.03.015
Botlhoko, 2018, A new insight into morphological, thermal, and mechanical properties of melt-processed polylactide/poly(ε-caprolactone) blends, Polym. Degrad. Stab., 154, 84, 10.1016/j.polymdegradstab.2018.05.025
Newman, 2009, Molecular mobilities in biodegradable poly(dl-lactide)/poly(ε-caprolactone) blends, Macromolecules, 42, 5219, 10.1021/ma9007303
Chen, 2003, Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials, 24, 1167, 10.1016/S0142-9612(02)00466-0
López-Rodríguez, 2006, Crystallization, morphology, and mechanical behavior of polylactide/poly(ɛ-caprolactone) blends, Polym. Eng. Sci., 46, 1299, 10.1002/pen.20609
Urquijo, 2015, Melt processed PLA/PCL blends: effect of processing method on phase structure, morphology, and mechanical properties, J. Appl. Polym. Sci., 132, 10.1002/app.42641
Na, 2002, Compatibilization effect of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(ε-caprolactone) blends, Biomacromolecules, 3, 1179, 10.1021/bm020050r
Vilay, 2010, Improvement of microstructures and properties of biodegradable PLLA and PCL blends compatibilized with a triblock copolymer, Mater. Sci. Eng. A, 527, 6930, 10.1016/j.msea.2010.07.079
Gardella, 2014, PLA maleation: an easy and effective method to modify the properties of PLA/PCL immiscible blends, Colloid Polym. Sci., 292, 2391, 10.1007/s00396-014-3328-3
Harada, 2008, Reactive compatibilization of biodegradable poly(lactic acid)/poly(ɛ-caprolactone) blends with reactive processing agents, Polym. Eng. Sci., 48, 1359, 10.1002/pen.21088
Tuba, 2011, Characterization of reactively compatibilized poly(d,l-lactide)/poly(ε-caprolactone) biodegradable blends by essential work of fracture method, Eng. Fract. Mech., 78, 3123, 10.1016/j.engfracmech.2011.09.010
Takayama, 2006, Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition, J. Mater. Sci., 41, 4989, 10.1007/s10853-006-0137-1
Wang, 1998, Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone), Polym. Degrad. Stab., 59, 161, 10.1016/S0141-3910(97)00196-1
Semba, 2006, The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends, J. Appl. Polym. Sci., 101, 1816, 10.1002/app.23589
Bai, 2012, Tailoring impact toughness of poly(l-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix, Appl. Mater. Interfaces, 4, 897, 10.1021/am201564f
Shin, 2013, Compatibilization of immiscible poly(lactic acid)/poly(ε-caprolactone) blend through electron-beam irradiation with the addition of a compatibilizing agent, Radiat. Phys. Chem., 83, 98, 10.1016/j.radphyschem.2012.10.001
Monticelli, 2014, Silsesquioxanes: novel compatibilizing agents for tuning the microstructure and properties of PLA/PCL immiscible blends, Eur. Polym. J., 58, 69, 10.1016/j.eurpolymj.2014.06.021
Al-Mulla, 2013, Effect of epoxidized palm oil on the mechanical and morphological properties of a PLA–PCL blend, Res. Chem. Intermed., 40, 689, 10.1007/s11164-012-0994-y
Wu, 2008, Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend, Eur. Polym. J., 44, 2171, 10.1016/j.eurpolymj.2008.04.023
Palierne, 1990, Linear rheology of viscoelastic emulsions with interfacial tension, Rheol. Acta, 29, 204, 10.1007/BF01331356
Zhang, 2009, Effect of steady shear on the morphology of biodegradable poly(ϵ-caprolactone)/polylactide blend, Polym. Eng. Sci., 49, 2293, 10.1002/pen.21456
Aslan, 2000, Poly(d,l-lactic acid)/poly (ε-caprolactone) blend membranes: preparation and morphological characterization, J. Mater. Sci., 35, 1615, 10.1023/A:1004787326273
Calandrelli, 2008, Compatibilized polymer blends based on PDLLA and PCL for application in bioartificial liver, Biomacromolecules, 9, 1527, 10.1021/bm7013087
Lebourg, 2008, Porous membranes of PLLA–PCL blend for tissue engineering applications, Eur. Polym. J., 44, 2207, 10.1016/j.eurpolymj.2008.04.033
Sun, 2009, In vitroandin vivotesting of novel ultrathin PCL and PCL/PLA blend films as peripheral nerve conduit, J. Biomed. Mater. Res. A, 9999A, 10.1002/jbm.a.32681
Huang, 2017, A novel route to the generation of porous scaffold based on the phase morphology control of co-continuous poly(ε-caprolactone)/polylactide blend in supercritical CO2, Polymer, 118, 163, 10.1016/j.polymer.2017.04.065
Jain, 2010, A new biodegradable flexible composite sheet from poly(lactic acid)/poly(ε-caprolactone) blends and micro-talc, Macromol. Mater. Eng., 295, 750, 10.1002/mame.201000063
Peponi, 2018, Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite, Polym. Degrad. Stab., 151, 36, 10.1016/j.polymdegradstab.2018.02.019
Jiang, 2006, Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends, Biomacromolecules, 7, 199, 10.1021/bm050581q
Nofar, 2017, Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies, Eur. Polym. J., 90, 231, 10.1016/j.eurpolymj.2017.03.031
Deng, 2018, Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology, J. Polym. Environ., 26, 3802, 10.1007/s10924-018-1256-x
Lee, 2007, Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate), Macromol. Res., 15, 44, 10.1007/BF03218751
Coltelli, 2008, Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization, J. Appl. Polym. Sci., 110, 1250, 10.1002/app.28512
Al-Itry, 2012, Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy, Polym. Degrad. Stab., 97, 1898, 10.1016/j.polymdegradstab.2012.06.028
Al-Itry, 2014, Reactive extrusion of PLA, PBAT with a multi-functional epoxide: physico-chemical and rheological properties, Eur. Polym. J., 58, 90, 10.1016/j.eurpolymj.2014.06.013
Al-Itry, 2015, Effect of the simultaneous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state, Eur. Polym. J., 68, 288, 10.1016/j.eurpolymj.2015.05.001
Arruda, 2015, Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends, Polym. Test., 43, 27, 10.1016/j.polymertesting.2015.02.005
Dong, 2013, Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/poly(butylene adipate-co-terephthalate) blends, Int. J. Mol. Sci., 14, 20189, 10.3390/ijms141020189
Dong, 2013, Influence of phthalic anhydride and bioxazoline on the mechanical and morphological properties of biodegradable poly(lactic acid)/poly[(butylene adipate)-co-terephthalate] blends, Polym. Int., 62, 1783, 10.1002/pi.4568
Zhang, 2008, Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent, J. Mater. Sci., 44, 250, 10.1007/s10853-008-3049-4
Nishida, 2015, Improvement of dynamic tensile properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) polymer alloys using a crosslinking agent and observation of fracture surfaces, Int. J. Impact Eng., 79, 117, 10.1016/j.ijimpeng.2014.11.010
Coltelli, 2010, The effect of free radical reactions on structure and properties of poly(lactic acid) (PLA) based blends, Polym. Degrad. Stab., 95, 332, 10.1016/j.polymdegradstab.2009.11.015
Zhang, 2012, Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with epoxy-functional styrene acrylic copolymer as reactive agent, J. Polym. Environ., 21, 286, 10.1007/s10924-012-0448-z
Ma, 2014, In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator, Polym. Degrad. Stab., 102, 145, 10.1016/j.polymdegradstab.2014.01.025
Sirisinha, 2011, Melt characteristics, mechanical, and thermal properties of blown film from modified blends of poly(butylene adipate-co-terephthalate) and poly(lactide), J. Appl. Polym. Sci., 10.1002/app.35604
Lins, 2015, Phosphonium ionic liquids as new compatibilizing agents of biopolymer blends composed of poly(butylene-adipate-co-terephtalate)/poly(lactic acid) (PBAT/PLA), RSC Adv., 5, 59082, 10.1039/C5RA10241C
Wu, 2017, Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends, Mater. Lett., 192, 17, 10.1016/j.matlet.2017.01.063
Gu, 2008, Melt rheology of polylactide/poly(butylene adipate-co-terephthalate) blends, Carbohydr. Polym., 74, 79, 10.1016/j.carbpol.2008.01.017
Li, 2011, Dynamic rheological behavior and morphology of polylactide/poly(butylenes adipate-co-terephthalate) blends with various composition ratios, Adv. Polym. Technol., 30, 150, 10.1002/adv.20212
Nofar, 2015, Interfacial and rheological properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow, J. Rheol., 59, 317, 10.1122/1.4905714
Nofar, 2016, Coalescence in PLA-PBAT blends under shear flow: effects of blend preparation and PLA molecular weight, J. Rheol., 60, 637, 10.1122/1.4953446
Dil, 2015, Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends, Polymer, 68, 202, 10.1016/j.polymer.2015.05.012
Xiao, 2009, Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends, Appl. Polym. Sci., 112, 3754, 10.1002/app.29800
Yeh, 2009, Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends, J. Appl. Polym. Sci., 10.1002/app.30907
Quero, 2011, Isothermal cold-crystallization of PLA/PBAT blends with and without the addition of acetyl tributyl citrate, Macromol. Chem. Phys., 213, 36, 10.1002/macp.201100437
Wang, 2013, Isothermal crystallization and melting behaviors of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends compatibilized by transesterification, Polym.-Plast. Technol. Eng., 52, 718, 10.1080/03602559.2012.762671
Chiu, 2013, Heat treatment effects on the mechanical properties and morphologies of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends, Int. J. Police Sci. Manag., 2013, 1, 10.1155/2013/951696
Signori, 2009, Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing, Polym. Degrad. Stab., 94, 74, 10.1016/j.polymdegradstab.2008.10.004
Weng, 2013, Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions, Polym. Test., 32, 918, 10.1016/j.polymertesting.2013.05.001
Liewchirakorn, 2017, Practical approach in developing desirable peel-seal and clear lidding films based on poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends, Packag. Technol. Sci., 31, 296, 10.1002/pts.2321
Lee, 2005, Characterization and processing of biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate), Korea Aust. Rheol J., 17, 71
Pivsa-Art, 2014, Compression molding and melt-spinning of the blends of poly(lactic acid) and poly(butylene succinate-co-adipate), J. Appl. Polym. Sci., 132
Ojijo, 2012, Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate], ACS Appl. Mater. Interfaces, 4, 6690, 10.1021/am301842e
Wang, 2009, Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites, J. Appl. Polym. Sci., 113, 3095, 10.1002/app.30333
Eslami, 2013, Effect of a chain extender on the rheological and mechanical properties of biodegradable poly(lactic acid)/poly[(butylene succinate)-co-adipate] blends, J. Appl. Polym. Sci., 129, 2418, 10.1002/app.38449
Ojijo, 2015, Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization, Polymer, 80, 1, 10.1016/j.polymer.2015.10.038
Ojijo, 2013, Toughening of biodegradable polylactide/poly(butylene succinate-co-adipate) blends via in situ reactive compatibilization, ACS Appl. Mater. Interfaces, 5, 4266, 10.1021/am400482f
Gui, 2012, Morphology and melt rheology of biodegradable poly(lactic acid)/poly(butylene succinate adipate) blends: effect of blend compositions, Iran. Polym. J., 21, 81, 10.1007/s13726-011-0009-7
Eslami, 2012, Elongational rheology of biodegradable poly(lactic acid)/poly[(butylene succinate)-co-adipate] binary blends and poly(lactic acid)/poly[(butylene succinate)-co-adipate]/clay ternary nanocomposites, J. Appl. Polym. Sci., 127, 2290, 10.1002/app.37928
Deng, 2015, Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects, Eur. Polym. J., 71, 534, 10.1016/j.eurpolymj.2015.08.029
Park, 2002, Morphological changes during heating in poly(L-lactic acid)/poly(butylene succinate) blend systems as studied by synchrotron X-ray scattering, J. Polym. Sci. B Polym. Phys., 40, 1931, 10.1002/polb.10240
Park, 2002, Phase behavior and morphology in blends of poly(l-lactic acid) and poly(butylene succinate), J. Appl. Polym. Sci., 86, 647, 10.1002/app.10923
Bhatia, 2007, Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application, Korea Aust. Rheol. J., 19, 125
Yokohara, 2008, Structure and properties for biomass-based polyester blends of PLA and PBS, Eur. Polym. J., 44, 677, 10.1016/j.eurpolymj.2008.01.008
Xu, 2012, Relaxation behavior of poly(lactic acid)/poly(butylene succinate) blend and a new method for calculating its interfacial tension, J. Appl. Polym. Sci., 125, 10.1002/app.36910
Wu, 2012, Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend, Ind. Eng. Chem. Res., 51, 2290, 10.1021/ie2022288
Wang, 2009, Toughening modification of PLLA/PBS blends via in situ compatibilization, Polym. Eng. Sci., 49, 26, 10.1002/pen.21210
Shibata, 2006, Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly(butylene succinate), Polymer, 47, 3557, 10.1016/j.polymer.2006.03.065
Ji, 2013, Morphology, rheology, crystallization behavior, and mechanical properties of poly(lactic acid)/poly(butylene succinate)/dicumyl peroxide reactive blends, J. Appl. Polym. Sci., 131
Harada, 2007, Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent, J. Appl. Polym. Sci., 106, 1813, 10.1002/app.26717
Persenaire, 2014, Reactive compatibilization of poly(l-lactide)/poly(butylene succinate) blends through polyester maleation: from materials to properties, Polym. Int., 63, 1724, 10.1002/pi.4700
Li, 2013, Novel biodegradable polylactide/poly(butylene succinate) composites via cross-linking with methylene diphenyl diisocyanate, Polym.-Plast. Technol. Eng., 52, 1183, 10.1080/03602559.2013.798817
Zhang, 2018, Copolymer P(BS-co-LA) enhanced compatibility of PBS/PLA composite, J. Polym. Environ., 26, 3060, 10.1007/s10924-018-1180-0
Kun, 2012, Biocompatibility of a novel poly(butyl succinate) and polylactic acid blend, ASAIO J., 58, 262, 10.1097/MAT.0b013e31824709ee
Kimble, 2015, In vitro degradation effects on strength, stiffness, and creep of PLLA/PBS: a potential stent material, Int. J. Polym. Mater. Polym. Biomater., 64, 299, 10.1080/00914037.2014.945203
Kovalovs, 2016, Search for composition of nanoparticles containing poly (vinyl alcohol)/poly (vinyl acetate) blend composites having the highest value of the modulus of elasticity by the response surface methodology, 111
Gajria, 1996, Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate), Polymer, 37, 437, 10.1016/0032-3861(96)82913-2
Mahalik, 2006, Enzymatic degradation of poly(d,l-lactide) and its blends with poly(vinyl acetate), J. Appl. Polym. Sci., 101, 675, 10.1002/app.23817
Shuai, 2001, Miscibility and phase structure of binary blends of poly(l-lactide) and poly(vinyl alcohol), J. Appl. Polym. Sci., 81, 762, 10.1002/app.1493
Tsuji, 2001, Blends of aliphatic polyesters. IV. Morphology, swelling behavior, and surface and bulk properties of blends from hydrophobic poly(l-lactide) and hydrophilic poly(vinyl alcohol), J. Appl. Polym. Sci., 81, 2151, 10.1002/app.1651
Yeh, 2008, Study on the crystallization kinetic and characterization of poly(lactic acid) and poly(vinyl alcohol) blends, Polym.-Plast. Technol. Eng., 47, 1289, 10.1080/03602550802497958
Li, 2014, Thermoplastic PVA/PLA blends with improved processability and hydrophobicity, Ind. Eng. Chem. Res., 53, 17355, 10.1021/ie502531w
Tran, 2013, Melt spinning of biodegradable nanofibrillary structures from poly(lactic acid) and poly(vinyl alcohol) blends, Macromol. Mater. Eng., 299, 219, 10.1002/mame.201300125
Neppalli, 2013, Effect of electrospun ethylene vinyl alcohol copolymer (EVOH) fibres on the structure, morphology, and properties of poly(lactic acid) (PLA), Polymer, 54, 5909, 10.1016/j.polymer.2013.08.046
Lee, 2005, Reactive blending of poly (l-lactic acid) with poly(ethylene- co-vinyl alcohol), J. Appl. Polym. Sci., 98, 886, 10.1002/app.22193
Zhang, 2013, Improving transparency of incompatible polymer blends by reactive compatibilization, Mater. Lett., 92, 68, 10.1016/j.matlet.2012.10.060
Gui, 2012, Improving the barrier properties of poly(lactic acid) by blending with poly(ethylene-co-vinyl alcohol), J. Macromol. Sci., Phys., 52, 685, 10.1080/00222348.2012.720180
Wu, 2016, Characterization and properties of reactive poly (lactic acid)/ethylene–vinyl alcohol copolymer blends with chain-extender, J. Polym. Environ., 24, 129, 10.1007/s10924-016-0755-x
Ma, 2006, Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends, J. Polym. Sci. B Polym. Phys., 44, 94, 10.1002/polb.20669
Gao, 2012, An optical microscopy study on the phase structure of poly(l-lactide acid)/poly(propylene carbonate) blends, J. Phys. Chem. B, 116, 9832, 10.1021/jp3041378
Ning, 2008, Partially miscible poly(lactic acid)-blend-poly(propylene carbonate) filled with carbon black as conductive polymer composite, Polym. Int., 57, 1027, 10.1002/pi.2442
Yao, 2011, Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride, Express Polym Lett, 5, 937, 10.3144/expresspolymlett.2011.92
Gao, 2012, Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends, Express Polym Lett, 6, 860, 10.3144/expresspolymlett.2012.92
Chen, 2013, Study on the mechenical properties of PPC/PLA blends modified by POSS, Adv. Mater. Res., 741, 28, 10.4028/www.scientific.net/AMR.741.28
Zhou, 2016, Effects of catalytic transesterification and composition on the toughness of poly(lactic acid)/poly(propylene carbonate) blends, Ind. Eng. Chem. Res., 55, 5565, 10.1021/acs.iecr.6b00315
Zeng, 2009, Synthesis and properties of poly(ester urethane)s consisting of poly(l-lactic acid) and poly(ethylene succinate) segments, Ind. Eng. Chem. Res., 48, 1706, 10.1021/ie801391m
Lu, 2007, Fully biodegradable blends of poly(l-lactide) and poly(ethylene succinate): miscibility, crystallization, and mechanical properties, Polymer, 48, 4196, 10.1016/j.polymer.2007.05.035
Fan, 2011, The effect of poly(ethylene succinate) on mechanical properties of PLLA/PES blend prepared by melt-blending, J. Macromol. Sci., Part B: Phys., 50, 493, 10.1080/00222341003652260
Ramdhanie, 2006, Thermal and mechanical characterization of electrospun blends of poly(lactic acid) and poly(glycolic acid), Polym. J., 38, 1137, 10.1295/polymj.PJ2006062
You, 2005, In vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(l-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres, Polym. Degrad. Stab., 90, 441, 10.1016/j.polymdegradstab.2005.04.015
You, 2006, Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers, Mater. Lett., 60, 757, 10.1016/j.matlet.2005.10.007
Pandey, 2008, Synthesis of polylactic acid–polyglycolic acid blends using microwave radiation, J. Mech. Behav. Biomed. Mater., 1, 227, 10.1016/j.jmbbm.2007.12.001
Iwata, 2015, ChemInform abstract: biodegradable and bio-based polymers: future prospects of eco-friendly plastics, Angew. Chem. Int. Ed., 46, 3210, 10.1002/anie.201410770
Shen, 2012, Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics, Biofuels Bioprod. Biorefin., 6, 625, 10.1002/bbb.1368
Winnacker, 2016, Biobased polyamides: recent advances in basic and applied research, Macromol. Rapid Commun., 37, 1391, 10.1002/marc.201600181
Zhang, 2009, Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer, Polymer, 50, 1311, 10.1016/j.polymer.2009.01.032
Stoclet, 2011, Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11, Polymer, 52, 1417, 10.1016/j.polymer.2011.02.002
Patel, 2013, Biorenewable blends of polyamide-11 and polylactide, Polym. Eng. Sci., 54, 1523, 10.1002/pen.23692
Gug, 2016, Improvement of the mechanical behavior of bioplastic poly(lactic acid)/polyamide blends by reactive compatibilization, J. Appl. Polym. Sci., 133, 10.1002/app.43350
Zolali, 2016, Ultratough co-continuous PLA/PA11 by interfacially percolated poly(ether-b-amide), Macromolecules, 50, 264, 10.1021/acs.macromol.6b02310
Heshmati, 2017, Morphology development in poly (lactic acid)/polyamide11 biobased blends: chain mobility and interfacial interactions, Polymer, 120, 197, 10.1016/j.polymer.2017.05.056
Heshmati, 2017, High performance poly (lactic acid)/bio-polyamide11 through controlled chain mobility, Polymer, 123, 184, 10.1016/j.polymer.2017.07.009
Pai, 2013, Characterization and properties of reactive poly(lactic acid)/polyamide 610 biomass blends, J. Appl. Polym. Sci., 130, 2563, 10.1002/app.39473
Kakroodi, 2017, Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films, Chem. Eng. J., 308, 772, 10.1016/j.cej.2016.09.130
Ferrero, 2014, Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed, Polym. Compos., 36, 1378, 10.1002/pc.23042
Brito, 2016, Mechanical and morphological properties of PLA/BioPE blend compatibilized with E-GMA and EMA-GMA copolymers, Macromol. Symp., 367, 176, 10.1002/masy.201500158
Plastic Moulding CA
Wang, 2001, Polyethylene-poly(l-lactide) diblock copolymers: synthesis and compatibilization of poly(l-lactide)/polyethylene blends, J. Polym. Sci. A Polym. Chem., 39, 2755, 10.1002/pola.1254
Anderson, 2003, Toughening of polylactide by melt blending with linear low-density polyethylene, J. Appl. Polym. Sci., 89, 3757, 10.1002/app.12462
Anderson, 2004, The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends, Polymer, 45, 8809, 10.1016/j.polymer.2004.10.047
Kim, 2004, Compatibilization of immiscible poly(l-lactide) and low density polyethylene blends, Fiber Polym., 5, 270, 10.1007/BF02875524
Su, 2009, Phase structure of compatibilized poly(lactic acid)/linear low-density polyethylene blends, J. Macromol. Sci., Part B: Phys., 48, 823, 10.1080/00222340902956327
Singh, 2010, Mechanical properties and morphology of polylactide, linear low-density polyethylene, and their blends, J. Appl. Polym. Sci., 118, 496, 10.1002/app.32305
Singh, 2010, Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends, Polym. Bull., 66, 939, 10.1007/s00289-010-0367-x
Djellali, 2013, Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends, Iran. Polym. J., 22, 245, 10.1007/s13726-013-0126-6
Lai, 2013, Synergistic effects by compatibilization and annealing treatment of metallocene polyethylene/PLA blends, J. Appl. Polym. Sci., 130, 2399, 10.1002/app.39437
Zolali, 2018, Toughening of cocontinuous polylactide/polyethylene blends via an interfacially percolated intermediate phase, Macromolecules, 51, 3572, 10.1021/acs.macromol.8b00464
Thurber, 2014, Accelerating reactive compatibilization of PE/PLA blends by an interfacially localized catalyst, ACS Macro Lett., 4, 30, 10.1021/mz500770y
Lu, 2016, Morphology and properties of bio-based poly (lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites, Polym. Test., 54, 90, 10.1016/j.polymertesting.2016.06.025
Hamad, 2011, Melt rheology of poly(lactic acid)/low density polyethylene polymer blends, Adv. Chem. Eng. Sci., 01, 208, 10.4236/aces.2011.14030
Hamad, 2012, Poly(lactic acid)/low density polyethylene polymer blends: preparation and characterization, Asia Pac. J. Chem. Eng., 7, S310, 10.1002/apj.1649
Jiang, 2011, Rheological responses and morphology of polylactide/linear low density polyethylene blends produced by different mixing type, Polym.-Plast. Technol. Eng., 50, 1035, 10.1080/03602559.2011.557822
Balakrishnan, 2010, Mechanical, thermal, and morphological properties of Polylactic acid/linear low density polyethylene blends, J. Elastomers Plast., 42, 223, 10.1177/0095244310362403
Bee, 2014, Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends, Nucl. Instrum. Methods Phys. Res., Sect. B, 334, 18, 10.1016/j.nimb.2014.04.024
Omura, 2006, Thermal degradation behavior of poly(lactic acid) in a blend with polyethylene, Ind. Eng. Chem. Res., 45, 2949, 10.1021/ie051446x
Rezgui, 2010, Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, part 1: microstructural analysis and tensile behavior at constant true strain-rate, Polym. Eng. Sci., 51, 117, 10.1002/pen.21797
Rezgui, 2010, Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, part 2: creep characterization and modeling, Polym. Eng. Sci., 51, 126, 10.1002/pen.21796
Reddy, 2008, Polylactic acid/polypropylene polyblend fibers for better resistance to degradation, Polym. Degrad. Stab., 93, 233, 10.1016/j.polymdegradstab.2007.09.005
Kim, 2013, Miscibility and performance evaluation of natural-flour-filled PP/PBS and PP/PLA bio-composites, Fibers Polym., 14, 793, 10.1007/s12221-013-0793-0
Ploypetchara, 2014, Blend of polypropylene/poly(lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties, Energy Procedia, 56, 201, 10.1016/j.egypro.2014.07.150
Ying-Chen, 2010, Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber, Bioresour. Technol., 101, 7944, 10.1016/j.biortech.2010.05.007
Pivsa-Art, 2016, Effect of compatibilizer on PLA/PP blend for injection molding, Energy Procedia, 89, 353, 10.1016/j.egypro.2016.05.046
Yoo, 2010, Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends, Macromol. Res., 18, 583, 10.1007/s13233-010-0613-y
Lee, 2012, Effect of a hybrid compatibilizer on the mechanical properties and interfacial tension of a ternary blend with polypropylene, poly(lactic acid), and a toughening modifier, Polym. Compos., 33, 1154, 10.1002/pc.22244
Choudhary, 2011, Poly(l-lactide)/polypropylene blends: evaluation of mechanical, thermal, and morphological characteristics, J. Appl. Polym. Sci., 121, 3223, 10.1002/app.33866
Xu, 2015, Reactive compatibilization of polylactide/polypropylene blends, Ind. Eng. Chem. Res., 54, 6108, 10.1021/acs.iecr.5b00882
Lin, 2012, Polypropylene/poly (lactic acid) semibiocomposites modified with two kinds of intumescent flame retardants, Polym.-Plast. Technol. Eng., 51, 991, 10.1080/03602559.2012.680559
Biresaw, 2002, Interfacial tension of poly(lactic acid)/polystyrene blends, J. Polym. Sci. B Polym. Phys., 40, 2248, 10.1002/polb.10290
Sarazin, 2003, Morphology control in co-continuous poly(l-lactide)/polystyrene blends: a route towards highly structured and interconnected porosity in poly(l-lactide) materials, Biomacromolecules, 4, 1669, 10.1021/bm030034+
Yuan, 2004, Macroporous poly(l-lactide) of controlled pore size derived from the annealing of co-continuous polystyrene/poly(l-lactide) blends, Biomaterials, 25, 2161, 10.1016/j.biomaterials.2003.08.060
Leung, 2009, X-ray spectromicroscopy study of protein adsorption to a polystyrene−polylactide blend, Biomacromolecules, 10, 1838, 10.1021/bm900264w
Leung, 2009, Phase segregation in polystyrene−polylactide blends, Macromolecules, 42, 1679, 10.1021/ma802176b
Gu, 2018, Reactive compatibilization of poly(lactic acid)/polystyrene blends and its application to preparation of hierarchically porous poly(lactic acid), Polymer, 134, 104, 10.1016/j.polymer.2017.11.054
Biresaw, 2004, Compatibility and mechanical properties of blends of polystyrene with biodegradable polyesters, Compos. A: Appl. Sci. Manuf., 35, 313, 10.1016/j.compositesa.2003.09.020
Mohamed, 2007, Poly(lactic acid)/polystyrene bioblends characterized by thermogravimetric analysis, differential scanning calorimetry, and photoacoustic infrared spectroscopy, J. Appl. Polym. Sci., 106, 1689, 10.1002/app.26783
Zuza, 2008, Compatibilization through specific interactions and dynamic fragility in poly(d,l-lactide)/polystyrene blends, Macromol. Chem. Phys., 209, 2423, 10.1002/macp.200800443
Hamad, 2010, Rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend, Polym. Bull., 65, 509, 10.1007/s00289-010-0354-2
Hamad, 2010, Effect of recycling on rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend, J. Mater. Sci., 46, 3013, 10.1007/s10853-010-5179-8
Kaseem, 2016, Melt flow behavior and processability of polylactic acid/polystyrene (PLA/PS) polymer blends, J. Polym. Environ., 25, 994, 10.1007/s10924-016-0873-5
Li, 2009, Improvement in toughness of poly(l-lactide) (PLLA) through reactive blending with acrylonitrile–butadiene–styrene copolymer (ABS): morphology and properties, Eur. Polym. J., 45, 738, 10.1016/j.eurpolymj.2008.12.010
Jo, 2012, Effects of compatibilizers on the mechanical properties of ABS/PLA composites, J. Appl. Polym. Sci., 125, 10.1002/app.36732
Choe, 2014, Mechanical properties of acrylonitrile-butadiene-styrene copolymer/poly(l-lactic acid) blends and their composites, J. Appl. Polym. Sci., 131, 10.1002/app.40329
Dong, 2015, PLLA/ABS blends compatibilized by reactive comb polymers: double Tg depression and significantly improved toughness, ACS Sustain. Chem. Eng., 3, 2542, 10.1021/acssuschemeng.5b00740
Vadori, 2016, Sustainable biobased blends from the reactive extrusion of polylactide and acrylonitrile butadiene styrene, J. Appl. Polym. Sci., 133, 10.1002/app.43771
Vadori, 2017, Statistical optimization of compatibilized blends of poly(lactic acid) and acrylonitrile butadiene styrene, J. Appl. Polym. Sci., 134, 44516, 10.1002/app.44516
Wu, 2015, Toughening of poly(l-lactide) modified by a small amount of acrylonitrile−butadiene−styrene core-shell copolymer, J. Appl. Polym. Sci., 132, 42554, 10.1002/app.42554
Zhang, 2003, Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate), J. Polym. Sci. B Polym. Phys., 41, 23, 10.1002/polb.10353
Cossement, 2006, PLA-PMMA blends: a study by XPS and ToF-SIMS, Appl. Surf. Sci., 252, 6636, 10.1016/j.apsusc.2006.02.225
Gonzalez-Garzon, 2018, Properties and phase structure of melt-processed PLA/PMMA blend, J. Polym. Res., 25, 58, 10.1007/s10965-018-1438-1
Samuel, 2013, PLLA/PMMA blends: a shear-induced miscibility with tunable morphologies and properties?, Polymer, 54, 3931, 10.1016/j.polymer.2013.05.021
Samuel, 2014, Designing multiple-shape memory polymers with miscible polymer blends: evidence and origins of a triple-shape memory effect for miscible PLLA/PMMA blends, Macromolecules, 47, 6791, 10.1021/ma500846x
Samuel, 2013, Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): improved processability and thermomechanical properties of stereocomplexable polylactide-based materials, Appl. Mater. Interfaces, 5, 11797, 10.1021/am403443m
Bao, 2015, Polymorphism of a high-molecular-weight racemic poly(l-lactide)/poly(d-lactide) blend: effect of melt blending with poly(methyl methacrylate), RSC Adv., 5, 19058, 10.1039/C5RA00691K
Hao, 2015, Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends, Polymer, 80, 38, 10.1016/j.polymer.2015.10.037
Wu, 2015, Physical properties and crystallization behavior of poly(lactide)/poly(methyl methacrylate)/silica composites, J. Appl. Polym. Sci., 132, 42378, 10.1002/app.42378
Anakabe, 2016, The effect of the addition of poly(styrene-co-glycidyl methacrylate) copolymer on the properties of polylactide/poly(methyl methacrylate) blend, J. Appl. Polym. Sci., 133, 43935, 10.1002/app.43935
Imre, 2014, Interactions, structure and properties in poly(lactic acid)/thermoplastic polymer blends, Express Polym Lett, 8, 2, 10.3144/expresspolymlett.2014.2
Girija, 2005, Thermal degradation and mechanical properties of PET blends, Polym. Degrad. Stab., 90, 147, 10.1016/j.polymdegradstab.2005.03.003
Chen, 2009, Non-isothermal crystallization of PET/PLA blends, Thermochim. Acta, 492, 61, 10.1016/j.tca.2009.04.023
Fu, 2012, Molecular dynamics and dissipative particle dynamics simulations for prediction of miscibility in polyethylene terephthalate/polylactide blends, Mol. Simul., 39, 415, 10.1080/08927022.2012.738294
Torres-Huerta, 2014, Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends, Eur. Polym. J., 61, 285, 10.1016/j.eurpolymj.2014.10.016
Li, 2013, Electrospun fibers of poly(ethylene terephthalate) blended with poly(lactic acid), J. Therm. Anal. Calorim., 116, 1351, 10.1007/s10973-013-3583-4
Mclauchlin, 2016, Studies on the thermal and mechanical behavior of PLA-PET blends, J. Appl. Polym. Sci., 133, 44147, 10.1002/app.44147
Torres-Huerta, 2016, Morphological and mechanical properties dependence of PLA amount in PET matrix processed by single-screw extrusion, Polym.-Plast. Technol. Eng., 55, 672, 10.1080/03602559.2015.1132433
Jiang, 2014, Morphology, interfacial and mechanical properties of polylactide/poly(ethylene terephthalate glycol) blends compatibilized by polylactide-g-maleic anhydride, Mater. Des., 59, 524, 10.1016/j.matdes.2014.03.016
Mantia, 2011, Effect of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles, Polym. Degrad. Stab., 21
Lorenzo, 2013, Miscibility and properties of poly(l-lactic acid)/poly(butylene terephthalate) blends, Eur. Polym. J., 49, 3309, 10.1016/j.eurpolymj.2013.06.038
Kim, 2010, Chain extension effects of para-phenylene diisocyanate on crystallization behavior and biodegradability of poly(lactic acid)/poly(butylene terephthalate) blends, Adv. Compos. Mater., 19, 331, 10.1163/092430409X12605406698471
Samthong, 2014, Morphology, structure, and properties of poly(lactic acid) microporous films containing poly(butylene terephthalate) fine fibers fabricated by biaxial stretching, J. Appl. Polym. Sci., 132, 41415
Samthong, 2015, Effects of size and shape of dispersed poly(butylene terephthalate) on isothermal crystallization kinetics and morphology of poly(lactic acid) blends, Polym. Eng. Sci., 56, 258, 10.1002/pen.24246
Lin, 2010, Miscibility, thermal and mechanical properties of melt-mixed poly(lactic acid)/poly(trimethylene terephthalate) blends, Polym.-Plast. Technol. Eng., 49, 1001, 10.1080/03602559.2010.482078
Zou, 2009, Crystallization, hydrolytic degradation, and mechanical properties of poly (trimethylene terephthalate)/poly(lactic acid) blends, Polym. Bull., 64, 471, 10.1007/s00289-009-0191-3
Zou, 2011, Thermal properties and non-isothermal crystallization behavior of poly(trimethylene terephthalate)/poly(lactic acid) blends, Polym. Int., 10.1002/pi.3087
Padee, 2013, Preparation of poly(lactic acid) and poly(trimethylene terephthalate) blend fibers for textile application, Energy Procedia, 34, 534, 10.1016/j.egypro.2013.06.782
Nagarajan, 2016, Reactive compatibilization of poly trimethylene terephthalate (PTT) and polylactic acid (PLA) using terpolymer: factorial design optimization of mechanical properties, Mater. Des., 110, 581, 10.1016/j.matdes.2016.08.022
Karsli, 2014, Properties of alkali treated short flax fiber reinforced poly(lactic acid)/polycarbonate composites, Fiber Polym., 15, 2607, 10.1007/s12221-014-2607-4
Lee, 2011, Compatibilizing effects for improving mechanical properties of biodegradable poly (lactic acid) and polycarbonate blends, Polym. Degrad. Stab., 96, 553, 10.1016/j.polymdegradstab.2010.12.019
Wang, 2012, Improvement in toughness and heat resistance of poly(lactic acid)/polycarbonate blend through twin-screw blending: Influence of compatibilizer type, J. Appl. Polym. Sci., 125, 10.1002/app.36920
Wang, 2012, The role of polycarbonate molecular weight in the poly(l-lactide) blends compatibilized with poly(butylene succinate-co-l-lactate), Polym. Eng. Sci., 53, 1171, 10.1002/pen.23374
Phuong, 2014, Compatibilization and property enhancement of poly(lactic acid)/polycarbonate blends through triacetin-mediated interchange reactions in the melt, Polymer, 55, 4498, 10.1016/j.polymer.2014.06.070
Srithep, 2014, Processing and characterization of poly(lactic acid) blended with polycarbonate and chain extender, J. Polym. Eng., 665, 10.1515/polyeng-2013-0309
Lin, 2015, Improving the impact property and heat-resistance of PLA/PC blends through coupling molecular chains at the interface, Polym. Adv. Technol., 26, 1247, 10.1002/pat.3560
Yuryev, 2017, Novel biocomposites from biobased PC/PLA blend matrix system for durable applications, Compos. Part B, 130, 158, 10.1016/j.compositesb.2017.07.030
Harris, 2012, Durability of polylactide-based polymer blends for injection-molded applications, J. Appl. Polym. Sci., 158
Chun-Yan, 2012, Transesterification between poly(lactic acid) and polycarbonate under flow field and its influence on morphology of the blends, Acta Polym. Sin., 012, 1225, 10.3724/SP.J.1105.2012.12145
Yuryev, 2016, Hydrolytic stability of polycarbonate/poly(lactic acid) blends and its evaluation via poly(lactic) acid median melting point depression, Polym. Degrad. Stab., 134, 227, 10.1016/j.polymdegradstab.2016.10.011
Sedlarik, 2011, Effect of phase arrangement on solid state mechanical and thermal properties of polyamide 6/polylactide based co-polyester blends, J. Macromol. Sci., Part B: Phys., 51, 982, 10.1080/00222348.2011.610265
Feng, 2010, Structure and property of polylactide/polyamide blends, J. Macromol. Sci., Part B: Phys., 49, 1117, 10.1080/00222341003609179
Wang, 2010, Polyamide-6/poly(lactic acid) blends compatibilized by the maleic anhydride grafted polyethylene-Octene elastomer, Polym.-Plast. Technol. Eng., 49, 1241, 10.1080/03602559.2010.496418
Kucharczyk, 2012, Correlation of morphology and viscoelastic properties of partially biodegradable polymer blends based on polyamide 6 and polylactide copolyester, Polym.-Plast. Technol. Eng., 51, 1432, 10.1080/03602559.2012.709296
Kucharczyk, 2012, Properties enhancement of partially biodegradable polyamide/polylactide blends through compatibilization with novel polyalkenyl-poly-maleic-anhydride-amide/imide-based additives, J. Reinf. Plast. Compos., 31, 189, 10.1177/0731684411434150
Khankrua, 2014, Effect of chain extenders on thermal and mechanical properties of poly(lactic acid) at high processing temperatures: potential application in PLA/polyamide 6 blend, Polym. Degrad. Stab., 108, 232, 10.1016/j.polymdegradstab.2014.04.019
Nijenhuis, 1996, High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties, Polymer, 37, 5849, 10.1016/S0032-3861(96)00455-7
Lee, 2008, Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy, Biophys. J., 95, 1590, 10.1529/biophysj.108.133025
Younes, 1988, Phase separation in poly(ethylene glycol)/poly(lactic acid) blends, Eur. Polym. J., 24, 765, 10.1016/0014-3057(88)90013-4
Nakane, 2004, Porous poly(L-lactic acid)/poly(ethylene glycol) blend films, J. Appl. Polym. Sci., 94, 965, 10.1002/app.20959
Sungsanit, 2012, Properties of linear poly(lactic acid)/polyethylene glycol blends, Polym. Eng. Sci., 52, 108, 10.1002/pen.22052
Sheth, 1997, J. Appl. Polym. Sci., 66, 1495, 10.1002/(SICI)1097-4628(19971121)66:8<1495::AID-APP10>3.0.CO;2-3
Hu, 2003, Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity, Polymer, 44, 5711, 10.1016/S0032-3861(03)00615-3
Hu, 2003, Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity, Polymer, 44, 5701, 10.1016/S0032-3861(03)00614-1
Lai, 2004, The effect of end groups of PEG on the crystallization behaviors of binary crystalline polymer blends PEG/PLLA, Polymer, 45, 3073, 10.1016/j.polymer.2004.03.003
Hassouna, 2011, New approach on the development of plasticized polylactide (PLA): grafting of poly(ethylene glycol) (PEG) via reactive extrusion, Eur. Polym. J., 47, 2134, 10.1016/j.eurpolymj.2011.08.001
Gui, 2012, Novel polyethylene glycol-based polyester-toughened polylactide, Mater. Lett., 71, 63, 10.1016/j.matlet.2011.12.045
Choi, 2013, Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending, Eur. Polym. J., 49, 2356, 10.1016/j.eurpolymj.2013.05.027
Park, 2011, PLA/chain-extended PEG blends with improved ductility, J. Appl. Polym. Sci., 123, 2360, 10.1002/app.34823
Ahmed, 2010, Thermal and rheological properties of l-polylactide/polyethylene glycol/silicate nanocomposites films, J. Food Sci., 75, 97, 10.1111/j.1750-3841.2010.01809.x
Elvassore, 2001, Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques, J. Pharm. Sci., 90, 1628, 10.1002/jps.1113
Riley, 2003, Washington C, Langmuir, 19
Seck, 2010, Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(d,l-lactide)-based resins, J. Control. Release, 148, 34, 10.1016/j.jconrel.2010.07.111
Oliveira, 2013, Properties of poly(lactic acid) and poly(ethylene oxide) solvent polymer mixtures and nanofibers made by solution blow spinning, J. Appl. Polym. Sci., 129, 3672, 10.1002/app.39061
Serra, 2014, Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds, Mater. Sci. Eng. C, 38, 55, 10.1016/j.msec.2014.01.003
Qiu, 2013, Miscibility and double glass transition temperature depression of poly(l-lactic acid) (PLLA)/poly(oxymethylene) (POM) blends, Macromolecules, 46, 5806, 10.1021/ma401084y
Qiu, 2014, Enhanced crystallization rate of poly(l-lactic acid) (PLLA) by polyoxymethylene (POM) fragment crystals in the PLLA/POM blends with a small amount of POM, J. Phys. Chem. B, 118, 7167, 10.1021/jp412519g
Mathurosemontri, 2014, The effect of injection speed on morphology and mechanical properties of Polyoxymethylene/poly(lactic acid) blends, Energy Procedia, 56, 57, 10.1016/j.egypro.2014.07.131
Guo, 2015, Poly(lactic acid)/polyoxymethylene blends: morphology, crystallization, rheology, and thermal mechanical properties, Polymer, 69, 103, 10.1016/j.polymer.2015.05.050
Zhang, 1998, Miscibility and phase behavior of poly(d,l-lactide)/poly(p-vinylphenol) blends, J. Appl. Polym. Sci., 70, 811, 10.1002/(SICI)1097-4628(19981024)70:4<811::AID-APP22>3.0.CO;2-Y
Zhang, 1998, Miscibility and crystallization behaviour of poly(l-lactide)/poly(p-vinylphenol) blends, Polymer, 39, 4841, 10.1016/S0032-3861(97)10167-7
Meaurio, 2005, Miscibility and specific interactions in blends of poly(l-lactide) with poly(vinylphenol), Macromolecules, 38, 1207, 10.1021/ma047818f
Meaurio, 2005, Direct measurement of the enthalpy of mixing in miscible blends of poly(dl-lactide) with poly(vinylphenol), Macromolecules, 38, 9221, 10.1021/ma051591m
Arenaza, 2010, Molecular dynamics modelling for the analysis and prediction of miscibility in polylactide/polyvinilphenol blends, Polymer, 51, 4431, 10.1016/j.polymer.2010.07.018
Ishida, 2009, Toughening of poly(l-lactide) by melt blending with rubbers, J. Appl. Polym. Sci., 113, 558, 10.1002/app.30134
Bitinis, 2011, Structure and properties of polylactide/natural rubber blends, Mater. Chem. Phys., 129, 823, 10.1016/j.matchemphys.2011.05.016
Suksut, 2010, Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber, J. Polym. Environ., 19, 288, 10.1007/s10924-010-0278-9
Juntuek, 2011, Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends, J. Appl. Polym. Sci., 125, 745, 10.1002/app.36263
Kowalczyk, 2011, Mechanisms of plastic deformation in biodegradable polylactide/poly(1,4-cis-isoprene) blends, J. Appl. Polym. Sci., 124, 4579
Chumeka, 2012, Effect of poly (vinyl acetate) on mechanical properties and characteristics of poly(lactic acid)/natural rubber blends, J. Polym. Environ., 21, 450, 10.1007/s10924-012-0531-5
Huang, 2012, Study on the effect of dicumyl peroxide on structure and properties of poly(lactic acid)/natural rubber blend, J. Polym. Environ., 21, 375, 10.1007/s10924-012-0544-0
Chumeka, 2014, Bio-based triblock copolymers from natural rubber and poly(lactic acid): synthesis and application in polymer blending, Polymer, 55, 4478, 10.1016/j.polymer.2014.06.091
Mohammad, 2016, Influence of compatibilizer on the structure properties of polylactic acid/natural rubber blends, Polym. Sci., Ser. A, 58, 177, 10.1134/S0965545X16020164
Pattamaprom, 2016, Improvement in impact resistance of polylactic acid by masticated and compatibilized natural rubber, Iran. Polym. J., 25, 169, 10.1007/s13726-015-0411-7
Bijarimi, 2012, Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized natural rubber blends, J. Elastomers Plast., 46, 338, 10.1177/0095244312468442
Bijarimi, 2014, Melt blends of poly(lactic acid)/natural rubber and liquid epoxidised natural rubber, J. Rubb. Res., 17, 57
Rosli, 2016, Mechanical and thermal properties of natural rubber-modified poly(lactic acid) compatibilized with telechelic liquid natural rubber, Polym. Test., 54, 196, 10.1016/j.polymertesting.2016.07.021
Jaratrotkamjorn, 2011, Toughness enhancement of poly(lactic acid) by melt blending with natural rubber, J. Appl. Polym. Sci., 124, 5027
Ayutthaya, 2014, Thermal and mechanical properties of poly(lactic acid)/natural rubber blend using epoxidized natural rubber and poly(methyl methacrylate) as co-compatibilizers, Macromol. Res., 22, 686, 10.1007/s13233-014-2102-1
Zhang, 2013, Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber, Mater. Des., 45, 198, 10.1016/j.matdes.2012.09.024
Desa, 2016, Influence of rubber content on mechanical, thermal, and morphological behavior of natural rubber toughened poly(lactic acid)-multiwalled carbon nanotube nanocomposites, J. Appl. Polym. Sci., 133, 44344
Maroufkhani, 2017, Polylactide (PLA) and acrylonitrile butadiene rubber (NBR) blends: the effect of ACN content on morphology, compatibility and mechanical properties, Polymer, 115, 37, 10.1016/j.polymer.2017.03.025
Chen, 2014, Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase, Appl. Mater. Interfaces, 6, 3811, 10.1021/am5004766
Yuan, 2014, Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems, Carbohydr. Polym., 113, 438, 10.1016/j.carbpol.2014.07.044
Xu, 2014, Physical blend of PLA/NR with co-continuous phase structure: preparation, rheology property, mechanical properties and morphology, Polym. Test., 37, 94, 10.1016/j.polymertesting.2014.05.005
Chen, 2015, Biobased heat-triggered shape-memory polymers based on polylactide/epoxidized natural rubber blend system fabricated via peroxide-induced dynamic vulcanization: co-continuous phase structure, shape memory behavior, and interfacial compatibilization, Ind. Eng. Chem. Res., 54, 8723, 10.1021/acs.iecr.5b02195
Wang, 2015, Supertoughened biobased poly(lactic acid)–epoxidized natural rubber thermoplastic vulcanizates: fabrication, co-continuous phase structure, interfacial in situ compatibilization, and toughening mechanism, J. Phys. Chem. B, 119, 12138, 10.1021/acs.jpcb.5b06244
Yuan, 2016, Phenolic resin-induced dynamically vulcanized polylactide/natural rubber blends, Polym.-Plast. Technol. Eng., 55, 1115, 10.1080/03602559.2015.1132437
Zhang, 2013, Shape memory polymer hybrids of SBS/dl-PLA and their shape memory effects, Mater. Chem. Phys., 137, 750, 10.1016/j.matchemphys.2012.10.006
Wu, 2015, Enhancing the PLA crystallization rate and mechanical properties by melt blending with poly(styrene-butadiene-styrene) copolymer, Polym. Plast. Test. Technol., 54, 1043, 10.1080/03602559.2014.974274
Wang, 2016, Highly toughened polylactide/epoxidized poly(styrene-b-butadiene-b-styrene) blends with excellent tensile performance, Eur. Polym. J., 85, 92, 10.1016/j.eurpolymj.2016.10.019
Tsou, 2015, Biocompatibility and characterization of polylactic acid/styrene-ethylene-butylene-styrene composites, Bio-Med. Mater. Eng., 26
Sangeetha, 2016, Toughening of polylactic acid using styrene ethylene butylene styrene: mechanical, thermal, and morphological studies, Polym. Eng. Sci., 56, 669, 10.1002/pen.24293
Jiang, 2012, Rubber-toughened PLA blends with low thermal expansion, J. Appl. Polym. Sci., 128, 3993, 10.1002/app.38642
Zhao, 2013, Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid)(PLA), Polym. Test., 32, 299, 10.1016/j.polymertesting.2012.11.012
Lim, 2016, Toughening poly(lactic acid) (PLA) throughin situreactive blending with liquid polybutadiene rubber (LPB), Compos. Interface, 23, 807, 10.1080/09276440.2016.1175168
Vuillaume, 2018, Compatibilisation of various PLA/thermoplastic elastomer blends with diisocyanate coupling agent, Plast., Rubber Compos., 47, 95, 10.1080/14658011.2018.1439716
Gu, 2018, Toughening poly(lactic acid) with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers, Polymer, 156, 261, 10.1016/j.polymer.2018.09.027
Zeng, 2011, Improving flexibility of poly(l-lactide) by blending with poly(l-lactic acid) based poly(ester-urethane): morphology, mechanical properties, and crystallization behaviors, Ind. Chem. Eng. Res., 50, 6124, 10.1021/ie102422q
Feng, 2013, Flexibility improvement of poly(l-lactide) by reactive blending with poly(ether urethane) containing poly(ethylene glycol) blocks, Macromol. Chem. Phys., 214, 824, 10.1002/macp.201200696
Imre, 2013, Structure, properties and interfacial interactions in poly(lactic acid)/polyurethane blends prepared by reactive processing, Eur. Polym. J., 49, 3104, 10.1016/j.eurpolymj.2013.07.007
Liu, 2014, In situ formed crosslinked polyurethane toughened polylactide, Polym. Chem., 5, 2530, 10.1039/c3py01649h
Lu, 2014, Supertoughened poly(lactic acid)/polyurethane blend material by in situ reactive interfacial compatibilization via dynamic vulcanization, Ind. Chem. Eng. Res., 53, 17386, 10.1021/ie503092w
Li, 2007, Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer, Macromol. Biosci., 7, 921, 10.1002/mabi.200700027
Feng, 2010, Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends, J. Appl. Polym. Sci., 119, 2778, 10.1002/app.32863
Feng, 2011, Structure and properties of ultradrawn polylactide/thermoplastic polyurethane elastomer blends, J. Macromol. Sci., Part B: Phys., 50, 1500, 10.1080/00222348.2010.518889
Han, 2011, Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends, J. Appl. Polym. Sci., 120, 3217, 10.1002/app.33338
Hong, 2011, A novel composite coupled hardness with flexibleness-polylactic acid toughen with thermoplastic polyurethane, J. Appl. Polym. Sci., 121, 855, 10.1002/app.33675
Jaso, 2014, Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends, J. Appl. Polym. Sci., 31, 41104
Dogan, 2013, Reactive compatibilization of PLA/TPU blends with a diisocyanate, J. Appl. Polym. Sci., 131, 40251
Lai, 2015, Compatibility improvement of poly(lactic acid)/thermoplastic polyurethane blends with 3-aminopropyl triethoxysilane, J. Appl. Polym. Sci., 132, 42322, 10.1002/app.42322
Zhao, 2015, Largely toughening biodegradable poly(lactic acid)/thermoplastic polyurethane blends by adding MDI, J. Appl. Polym. Sci., 132, 42511, 10.1002/app.42511
Oliaei, 2015, Investigation of structure and mechanical properties of toughened poly(l-lactide)/thermoplastic poly(ester urethane) blends, J. Appl. Polym. Sci., 133, 43104
Lai, 2013, Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends, J. Polym. Res., 20, 140, 10.1007/s10965-013-0140-6
Song, 2015, Biocompatible shape memory polymer actuators with high force capabilities, Eur. Polym. J., 67, 186, 10.1016/j.eurpolymj.2015.03.067
Jašo, 2015, Biodegradability study of polylactic acid/thermoplastic polyurethane blends, Polym. Test., 47, 1, 10.1016/j.polymertesting.2015.07.011
Whelan, 1994
Burt, 1995, Controlled delivery of taxol from microspheres composed of a blend of ethylene-vinyl acetate copolymer and poly (d,l-lactic acid), Cancer Lett., 88, 73, 10.1016/0304-3835(94)03614-O
Kenawy, 2002, Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend, J. Control. Release, 81, 57, 10.1016/S0168-3659(02)00041-X
Yoon, 1999, Thermal and mechanical properties of poly(l-lactic acid)–poly (ethylene-co-vinyl acetate) blends, Polymer, 40, 2303, 10.1016/S0032-3861(98)00463-7
Liu, 2011, Evaluation of two polymeric blends (EVA/PLA and EVA/PEG) as coating film materials for paclitaxel-eluting stent application, J. Mater. Sci. Mater. Med., 22, 327, 10.1007/s10856-010-4213-3
Ma, 2012, Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate content, Eur. Polym. J., 48, 146, 10.1016/j.eurpolymj.2011.10.015
Ma, 2015, Bio-based poly(lactide)/ethylene-co-vinyl acetate thermoplastic vulcanizates by dynamic crosslinking: structure vs. property, RSC Adv., 5, 15962, 10.1039/C4RA14194F
Xu, 2016, Transparent blown films from poly(lactide) and poly(ethylene-co-vinyl acetate) compounds: structure and property, Polym. Degrad. Stab., 129, 328, 10.1016/j.polymdegradstab.2016.05.010
Zhang, 2016, Morphology and properties of super-toughened bio-based poly(lactic acid)/poly(ethylene-co-vinyl acetate) blends by peroxide-induced dynamic vulcanization and interfacial compatibilization, Polym. Test., 56, 354, 10.1016/j.polymertesting.2016.11.003
Singla, 2016, Fabrication of super tough poly(lactic acid)/ethylene-co-vinyl-acetate blends via a melt recirculation approach: static-short term mechanical and morphological interpretation, RSC Adv., 6, 14580, 10.1039/C5RA24897C
Pracella, 2016, Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer, Carbohydr. Polym., 137, 515, 10.1016/j.carbpol.2015.10.094
Shi, 2014, Effects of heat treatment on the damping of EVM/PLA blends modified with polyols, Polym. Test., 35, 87, 10.1016/j.polymertesting.2014.02.008
Shi, 2014, The effects of a polyol on the damping properties of EVM/PLA blends, Polym. Test., 33, 1, 10.1016/j.polymertesting.2013.10.007
He, 2016, Damping properties of ethylene-vinyl acetate rubber/polylactic acid blends, J. Mater. Sci. Chem. Eng., 04, 15
Shi, 2016, Effects of fillers on the damping property of ethylene vinyl-acetate/polylactic acid blends, J. Mater. Sci. Chem. Eng., 04, 89
Cong, 2012, A novel enzymatic biodegradable route for PLA/EVA blends under agricultural soil of Vietnam, Mater. Sci. Eng. C, 32, 558, 10.1016/j.msec.2011.12.012
Moura, 2013, Characterization of EVA/PLA blends when exposed to different environments, J. Polym. Environ., 22, 148, 10.1007/s10924-013-0614-y
Cao, 2003, DSC study of biodegradable poly(lactic acid) and poly(hydroxy ester ether) blends, Thermochim. Acta, 406, 115, 10.1016/S0040-6031(03)00252-1
Zhang, 2003, Miscibility and phase structure of binary blends of polylactide and poly(vinylpyrrolidone), J. Appl. Polym. Sci., 88, 973, 10.1002/app.11735
Khurma, 2005, Miscibility study of solution cast blends of poly(lactic acid) and poly(vinyl butyral), S. Pac. J. Nat. App. Sci., 23, 22, 10.1071/SP05004
Pezzin, 2003, Poly(para-dioxanone) and poly(l-lactic acid) blends: thermal, mechanical, and morphological properties, J. Appl. Polym. Sci., 88, 2744, 10.1002/app.11984
Meng, 2012, Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties, Eur. Polym. J., 48, 127, 10.1016/j.eurpolymj.2011.10.009
Kang, 2013, Employing a novel bioelastomer to toughen polylactide, Polymer, 54, 2450, 10.1016/j.polymer.2013.02.053
Kowalczyk, 2014, Toughening of polylactide by blending with a novel random aliphatic–aromatic copolyester, Eur. Polym. J., 59, 59, 10.1016/j.eurpolymj.2014.07.002
Ho, 2008, Synthesis and characterization of TPO–PLA copolymer and its behavior as compatibilizer for PLA/TPO blends, Polymer, 49, 3902, 10.1016/j.polymer.2008.06.054
Oyama, 2009, Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer, Polymer, 50, 747, 10.1016/j.polymer.2008.12.025
Li, 2011, Morphology, rheology, and mechanical properties of polylactide/poly(ethylene-co-octene) blends, J. Macromol. Sci., Part B: Phys., 50, 2050, 10.1080/00222348.2011.557617
Su, 2009, Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane), Eur. Polym. J., 45, 2428, 10.1016/j.eurpolymj.2009.04.028
Liu, 2013, Blends of polylactide/thermoplactic elastomer: miscibility, physical aging and crystallization behaviors, Fiber Polym., 14, 1688, 10.1007/s12221-013-1688-9
Ran, 2010, Thermal and mechanical properties of blends of polylactide and poly(ethylene glycol-co-propylene glycol): influence of annealing, J. Appl. Polym. Sci., 116, 2050
Hazer, 2011, Synthesis of polylactide-b-poly (dimethyl siloxane) block copolymers and their blends with pure polylactide, J. Polym. Environ., 20, 477, 10.1007/s10924-011-0406-1
Xu, 2016, Selectively cross-linked poly (lactide)/ethylene-glycidyl methacrylate-vinyl acetate thermoplastic elastomers with partial dual-continuous network-like structures and shape memory performances, Eur. Polym. J., 84, 1, 10.1016/j.eurpolymj.2016.09.004
Pan, 2014, Enhanced nucleation and crystallization of poly(l-lactic acid) by immiscible blending with poly(vinylidene fluoride), Ind. Eng. Chem. Res., 53, 3148, 10.1021/ie404085a
Salehiyan, 2018, Processing-driven morphology development and crystallization behavior of immiscible polylactide/poly(vinylidene fluoride) blends, Macromol. Mater. Eng., 303, 10.1002/mame.201800349
Dong, 2016, Dramatic improvement in toughness of PLLA/PVDF blends: the effect of compatibilizer architectures, ACS Sustain. Chem. Eng., 4, 4480, 10.1021/acssuschemeng.6b01420
Picciani, 2010, Structural, electrical, mechanical, and thermal properties of electrospun poly(lactic acid)/polyaniline blend fibers, Macromol. Mater. Eng., 295, 618, 10.1002/mame.201000019
Liao, 2009, Preparation and characterization of ternary blends composed of polylactide, poly(ɛ-caprolactone) and starch, Mater. Sci. Eng. A, 515, 207, 10.1016/j.msea.2009.03.003
Carmona, 2014, Properties of a biodegradable ternary blend of thermoplastic starch (TPS), poly(ε-Caprolactone) (PCL) and poly(lactic acid) (PLA), J. Polym. Environ., 23, 83, 10.1007/s10924-014-0666-7
Mittal, 2015, Mechanical, thermal, rheological and morphological properties of binary and ternary blends of PLA, TPS and PCL, Macromol. Mater. Eng., 300, 423, 10.1002/mame.201400332
Mittal, 2014, PLA, TPS and PCL binary and ternary blends: structural characterization and time-dependent morphological changes, Colloid Polym. Sci., 293, 573, 10.1007/s00396-014-3458-7
Davoodi, 2016, Correction: preparation and characterization of interface-modified PLA/starch/PCL ternary blends using PLLA/triclosan antibacterial nanoparticles for medical applications, RSC Adv., 6
Davachi, 2017, Interface modified polylactic acid/starch/poly ε-caprolactone antibacterial nanocomposite blends for medical applications, Carbohydr. Polym., 155, 336, 10.1016/j.carbpol.2016.08.037
Wang, 2012, Poly(ethylene glycol) grafted starch introducing a novel interphase in poly(lactic acid)/poly(ethylene glycol)/starch ternary composites, J. Polym. Environ., 20, 528, 10.1007/s10924-012-0416-7
Shi, 2011, Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE, Polym. Degrad. Stab., 96, 175, 10.1016/j.polymdegradstab.2010.10.002
Ferrarezi, 2012, Poly(ethylene glycol) as a compatibilizer for poly(lactic acid)/thermoplastic starch blends, J. Polym. Environ., 21, 151, 10.1007/s10924-012-0480-z
Zhen, 2011, Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene succinate), Polym. Renewable Resour., 2, 49
Ma, 2012, Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene)-co-(vinyl acetate)/starch blends via reactive compatibilization, Polym. Int., 61, 1284, 10.1002/pi.4204
Zhou, 2015, Mechanical properties of biodegradable polylactide/poly(ether-block-amide)/thermoplastic starch blends: effect of the crosslinking of starch, J. Appl. Polym. Sci., 133, 42297
Kanzawa, 2011, Mechanical properties and morphological changes of poly(lactic acid)/polycarbonate/poly(butylene adipate-co-terephthalate) blend through reactive processing, J. Appl. Polym. Sci., 121, 2908, 10.1002/app.33916
Chen, 2014, Biobased ternary blends of lignin, poly(lactic acid), and poly(butylene adipate-co-terephthalate): the effect of lignin heterogeneity on blend morphology and compatibility, J. Polym. Environ., 22, 439, 10.1007/s10924-014-0704-5
Ravati, 2014, High performance materials based on a self-assembled multiple-percolated ternary blend, AICHE J., 60, 3005, 10.1002/aic.14495
Zhang, 2012, Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties, Appl. Mater. Interfaces, 4, 3091, 10.1021/am3004522
Ravati, 2014, Phase identification and interfacial transitions in ternary polymer blends by ToF-SIMS, Polymer, 55, 6110, 10.1016/j.polymer.2014.09.013
Yang, 2016, Toughening effect of poly(methyl methacrylate) on an immiscible poly(vinylidene fluoride)/polylactide blend, Polym. Int., 65, 675, 10.1002/pi.5109
Auliawan, 2011, Nanocomposites based on vermiculite clay and ternary blend of poly(L-lactic acid), poly(methyl methacrylate), and poly(ethylene oxide), Polym. Compos., 32, 1916, 10.1002/pc.21194
Auliawan, 2012, Crystallization kinetics and degradation of nanocomposites based on ternary blend of poly(L-lactic acid), poly(methyl methacrylate), and poly(ethylene oxide) with two different organoclays, J. Appl. Polym. Sci., 125, 10.1002/app.36761
Liu, 2010, Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization, Macromolecules, 43, 6058, 10.1021/ma101108g
Liu, 2012, Effects of reactive blending temperature on impact toughness of poly(lactic acid) ternary blends, Polymer, 53, 272, 10.1016/j.polymer.2011.12.036
Song, 2012, Effects of ionomer characteristics on reactions and properties of poly(lactic acid) ternary blends prepared by reactive blending, Polymer, 53, 2476, 10.1016/j.polymer.2012.03.050
Zhang, 2014, Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance, Appl. Mater. Interfaces, 6, 12436, 10.1021/am502337u
Nyambo, 2012, Toughening of brittle poly(lactide) with hyperbranched poly(ester-amide) and isocyanate-terminated prepolymer of polybutadiene, J. Mater. Sci., 47, 5158, 10.1007/s10853-012-6393-3
Sangeetha, 2016, Super toughened renewable poly(lactic acid) based ternary blends system: effect of degree of hydrolysis of ethylene vinyl acetate on impact and thermal properties, RSC Adv., 6, 72681, 10.1039/C6RA13366E
Wang, 2008, Mechanical, thermal and degradation properties of poly(d,l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend, Polym. Degrad. Stab., 93, 1364, 10.1016/j.polymdegradstab.2008.03.026
Hashima, 2010, Structure-properties of super-tough PLA alloy with excellent heat resistance, Polymer, 51, 3934, 10.1016/j.polymer.2010.06.045
Buddhiranon, 2011, Morphology development in relation to the ternary phase diagram of biodegradable PDLLA/PCL/PEO blends, Macromol. Chem. Phys., 212, 1379, 10.1002/macp.201100042
Ouyang, 2012, Preparation and properties of poly(lactic acid)/cellulolytic enzyme lignin/PGMA ternary blends, Chin. Chem. Lett., 23, 351, 10.1016/j.cclet.2011.11.023
Zolali, 2017, Compatibilization and toughening of co-continuous ternary blends via partially wet droplets at the interface, Polymer, 114, 277, 10.1016/j.polymer.2017.02.093
Maani, 2016, Rheological and morphological properties of thermoplastic olefin blends containing nanosilica, J. Nonnewton Fluid Mech., 233, 95, 10.1016/j.jnnfm.2016.01.017
Salehiyan, 2018, Influence of nanoclay localization on structure-property relationships of polylactide-based biodegradable blend nanocomposites, Macromol. Mater. Eng., 303, 10.1002/mame.201800134
Cabedo, 2006, Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications, Macromol. Symp., 233, 191, 10.1002/masy.200690017
Salehiyan, 2013, Effect of organoclay on non-linear rheological properties of poly(lactic acid)/poly(caprolactone) blends, Korean J. Chem. Eng., 30, 1013, 10.1007/s11814-013-0035-6
Urquijo, 2016, Structure and properties of poly(lactic acid)/poly(ε-caprolactone) nanocomposites with kinetically induced nanoclay location, J. Appl. Polym. Sci., 133, 10.1002/app.43815
Ren, 2007, Mechanical and thermal properties of poly(lactid acid)/starch/montmorillonite biodegradable blends, Polym. Compos., 15, 633, 10.1177/096739110701500806
Chapple, 2012, Mechanical, thermal, and fire properties of polylactide/starch blend/clay composites, J. Therm. Anal. Calorim., 113, 703, 10.1007/s10973-012-2776-6
Paglicawan, 2013, Influence of nanoclay on the properties of thermoplastic starch/poly(lactic acid) blends, J. Biobaased Mater. Bioenergy, 7, 102, 10.1166/jbmb.2013.1276
Wokadala, 2015, Morphology, thermal properties and crystallization kinetics of ternary blends of the polylactide and starch biopolymers and nanoclay: the role of nanoclay hydrophobicity, Polymer, 71, 82, 10.1016/j.polymer.2015.06.058
Jiang, 2009, Properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/nanoparticle ternary composites, Ind. Eng. Chem. Res., 48, 7594, 10.1021/ie900576f
Kumar, 2010, Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites, Bioresour. Technol., 101, 8406, 10.1016/j.biortech.2010.05.075
Nofar, 2018, Synergistic effects of chain extender and nanoclay on the crystallization behavior of polylactide, Int. J. Mater. Sci. Res., 1, 1, 10.18689/ijmsr-1000101
Ojijo, 2011, Morphology and properties of polymer composites based on biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend and nanoclay, Macromol. Mater. Eng., 296, 865, 10.1002/mame.201100042
Ojijo, 2012, Unique isothermal crystallization phenomenon in the ternary blends of biopolymers polylactide and poly[(butylene succinate)-co-adipate] and nano-clay, Polymer, 53, 505, 10.1016/j.polymer.2011.12.007
Ojijo, 2012, Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend composites, Appl. Mater. Interfaces, 4, 2395, 10.1021/am201850m
Malwela, 2015, Enzymatic degradation behavior of nanoclay reinforced biodegradable PLA/PBSA blend composites, Int. J. Biol. Macromol., 77, 131, 10.1016/j.ijbiomac.2015.03.018
Nuñez, 2011, Nanocomposites of PLA/PP blends based on sepiolite, Polym. Bull., 67, 1991, 10.1007/s00289-011-0616-7
Nuñez, 2011, Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite, Polym. Eng. Sci., 52, 988, 10.1002/pen.22168
Ebadi-Dehaghani, 2015, Experimental and theoretical analyses of mechanical properties of PP/PLA/clay nanocomposites, Compos. Part B, 69, 133, 10.1016/j.compositesb.2014.09.006
Ebadi-Dehaghani, 2016, On localization of clay nanoparticles in polypropylene/poly(lactic acid) blend nanocomposites: correlation with mechanical properties, J. Macromol. Sci., Part B: Phys., 55, 344, 10.1080/00222348.2016.1151475
Bitinis, 2012, Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites, Compos. Sci. Technol., 72, 305, 10.1016/j.compscitech.2011.11.018
Bitinis, 2014, Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites, App. Cly. Sci., 93–94, 78, 10.1016/j.clay.2014.02.024
Bitinis, 2013, Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I. processing and morphology, Carbohydr. Polym., 96, 611, 10.1016/j.carbpol.2013.02.068
Bitinis, 2013, Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: properties evaluation, Carbohydr. Polym., 96, 621, 10.1016/j.carbpol.2013.03.091
Ock, 2016, Effect of organoclay as a compatibilizer in poly(lactic acid) and natural rubber blends, Eur. Polym. J., 76
Ock, 2016, Characterization of compatibilizing effect of organoclay in poly(lactic acid) and natural rubber blends by FT-rheology, Macromolecules, 49, 2832, 10.1021/acs.macromol.5b02157
Ashabi, 2013, Tuning the processability, morphology and biodegradability of clay incorporated PLA/LLDPE blends via selective localization of nanoclay induced by melt mixing sequence, Express Polym Lett, 7, 21, 10.3144/expresspolymlett.2013.3
Ashabi, 2013, Effect of clay type and polymer matrix on microstructure and tensile properties of PLA/LLDPE/clay nanocomposites, J. Appl. Polym. Sci., 130, 749, 10.1002/app.39209
Abdolrasouli, 2014, Morphology development, melt linear viscoelastic properties and crystallinity of polylactide/polyethylene/organoclay blend nanocomposites, J. Appl. Polym. Sci., 132
Zhao, 2013, Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites, Compos. Part B, 51, 79, 10.1016/j.compositesb.2013.02.034
Derho, 2014, Structural evolution of poly(lactic acid)/poly(ethylene oxide)/unmodified clay upon ambient ageing, J. Appl. Polym. Sci., 131, 10.1002/app.40426
Nuzzo, 2014, Nanoparticle-induced co-continuity in immiscible polymer blends – a comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes, Polymer, 55, 4908, 10.1016/j.polymer.2014.07.036
Rashmi, 2016, Toughening of poly(lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes, Express Polym Lett
Aghjeh, 2015, In depth analysis of micro-mechanism of mechanical property alternations in PLA/EVA/clay nanocomposites: a combined theoretical and experimental approach, Mater. Des., 88, 1277, 10.1016/j.matdes.2015.09.081
Aghjeh, 2016, Application of linear rheology in determination of nanoclay localization in PLA/EVA/Clay nanocomposites: correlation with microstructure and thermal properties, Compos. Part B, 86, 273, 10.1016/j.compositesb.2015.09.064
Singla, 2016, Mechanical, morphological, and solid-state viscoelastic responses of poly(lactic acid)/ethylene-co-vinyl-acetate super-tough blend reinforced with halloysite nanotubes, J. Mater. Sci., 51, 10278, 10.1007/s10853-016-0255-3
Oliaei, 2016, Investigation on the properties of poly(l-lactide)/thermoplastic poly(ester urethane)/halloysite nanotube composites prepared based on prediction of halloysite nanotube location by measuring free surface energies, Polymer, 104, 104, 10.1016/j.polymer.2016.09.092
Wu, 2009, Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend, Biomacromolecules, 10, 417, 10.1021/bm801183f
Laredo, 2010, AC conductivity of selectively located carbon nanotubes in poly(ε-caprolactone)/polylactide blend nanocomposites, Biomacromolecules, 11, 1339, 10.1021/bm100135n
Xu, 2011, Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly(ε-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes, Appl. Mater. Interfaces, 3, 4858, 10.1021/am201355j
Wu, 2011, Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends, Macromol. Chem. Phys., 212, 613, 10.1002/macp.201000579
Ko, 2009, Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites, Polym. Bull., 63, 125, 10.1007/s00289-009-0072-9
Shi, 2011, Carbon nanotubes induced microstructure and mechanical properties changes in cocontinuous poly(l-lactide)/ethylene-co-vinyl acetate blends, Polym. Adv. Technol., 23, 783, 10.1002/pat.1959
Raja, 2013, Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites, Eur. Polym. J., 49, 3492, 10.1016/j.eurpolymj.2013.08.009
Nasti, 2016, Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends, Polymer, 99, 193, 10.1016/j.polymer.2016.06.058
Lee, 2014, Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes, Compos. Sci. Technol., 103, 78, 10.1016/j.compscitech.2014.08.019
Jang, 2015, Influence of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of polycarbonate/poly(lactic acid)/LA-g-MWCNT composites, Macromol. Res., 23, 916, 10.1007/s13233-015-3129-7
Park, 2012, Effect of multi-walled carbon nanotube dispersion on the electrical and rheological properties of poly(propylene carbonate)/poly(lactic acid)/multi-walled carbon nanotube composites, J. Mater. Sci., 48, 481, 10.1007/s10853-012-6762-y
Arrieta, 2014, PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties, Polym. Degrad. Stab., 107, 139, 10.1016/j.polymdegradstab.2014.05.010
Arrieta, 2014, Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties, Carbohydr. Polym., 107, 16, 10.1016/j.carbpol.2014.02.044
Arrieta, 2015, Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends, Carbohydr. Polym., 121, 265, 10.1016/j.carbpol.2014.12.056
Arrieta, 2016, Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals, Ind. Crop. Prod., 93, 290, 10.1016/j.indcrop.2015.12.058
Luzi, 2016, Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres, Ind. Crop. Prod., 93, 276, 10.1016/j.indcrop.2016.01.045
Zhang, 2016, Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends, Carbohydr. Polym., 140, 374, 10.1016/j.carbpol.2015.12.073
Pracella, 2014, Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc, Polymer, 55, 3720, 10.1016/j.polymer.2014.06.071
Heshmati, 2018, Cellulose nanocrystal in poly(lactic acid)/polyamide11 blends: preparation, morphology and co-continuity, Eur. Polym. J., 98, 11, 10.1016/j.eurpolymj.2017.10.027
Heshmati, 2017, Tuning the localization of finely dispersed cellulose nanocrystal in poly (lactic acid)/bio-polyamide11 blends, J. Polym. Sci. B Polym. Phys., 56, 576, 10.1002/polb.24563
Shen, 2015, Selective localization of reduced graphene oxides at the interface of PLA/EVA blend and its resultant electrical resistivity, Polym. Compos., 38, 1982, 10.1002/pc.23769
Forouharshad, 2015, A low-environmental-impact approach for novel bio-composites based on PLLA/PCL blends and high surface area graphite, Eur. Polym. J., 70, 28, 10.1016/j.eurpolymj.2015.06.016
Kelnar, 2017, Graphite nanoplatelets-modified PLA/PCL: effect of blend ratio and nanofiller localization on structure and properties, J. Mech. Behav. Biomed. Mater., 71, 271, 10.1016/j.jmbbm.2017.03.028
Botlhoko, 2017, Thermal, mechanical, and rheological properties of graphite- and graphene oxide-filled biodegradable polylactide/poly(ɛ-caprolactone) blend composites, J. Appl. Polym. Sci., 134, 10.1002/app.45373
Botlhoko, 2018, Morphological development and enhancement of thermal, mechanical, and electronic properties of thermally exfoliated graphene oxide-filled biodegradable polylactide/poly(ε-caprolactone) blend composites, Polymer, 139, 188, 10.1016/j.polymer.2018.02.005
Wu, 2017, Effect of nitrogen-doped graphene on morphology and properties of immiscible poly(butylene succinate)/polylactide blends, Compos. Part B, 113, 300, 10.1016/j.compositesb.2017.01.037
Li, 2012, Preparation and properties of polylactide/poly(ethylene-co-octene)/nano-SiO2 ternary composites, J. Macromol. Sci., Part B: Phys., 51, 1766, 10.1080/00222348.2012.659633
Yu, 2015, Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles, Polym. Test., 45, 107, 10.1016/j.polymertesting.2015.06.001
Xiu, 2014, Improving impact toughness of polylactide/poly(ether)urethane blends via designing the phase morphology assisted by hydrophilic silica nanoparticles, Polymer, 55, 1593, 10.1016/j.polymer.2014.01.057
Vrsaljko, 2014, Potential role of nanofillers as compatibilizers in immiscible PLA/LDPE Blends, J. Appl. Polym. Sci., 132
Dil, 2015, Localization of micro and nano- silica particles in a high interfacial tension poly(lactic acid)/low density polyethylene system, Polymer, 77, 156, 10.1016/j.polymer.2015.08.063
Dil, 2016, The effect of the interfacial assembly of nano-silica in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends on morphology, rheology and mechanical properties, Eur. Polym. J., 85, 635, 10.1016/j.eurpolymj.2016.07.022
Hao, 2016, Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica, Polymer, 82, 57, 10.1016/j.polymer.2015.11.029
Xiu, 2013, Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(l-lactide)/poly(ether)urethane blends, Express Polym Lett, 7, 261, 10.3144/expresspolymlett.2013.24
Mofokeng, 2015, Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler, Polym. Test., 45, 93, 10.1016/j.polymertesting.2015.05.007
Agwuncha, 2014, Influence of boehmite nanoparticle loading on the mechanical, thermal, and rheological properties of biodegradable polylactide/poly(ϵ-caprolactone) blends, Macromol. Mater. Eng., 300, 31, 10.1002/mame.201400212
Dil, 2016, Assembling copper nanowires at the interface and in discrete phases in PLA-based polymer blends, Eur. Polym. J., 85, 187, 10.1016/j.eurpolymj.2016.09.053
Grande, 2011, Compatible ternary blends of chitosan/poly(vinyl alcohol)/poly(lactic acid) produced by oil-in-water emulsion processing, Biomacromolecules, 12, 907, 10.1021/bm101227q
Zhang, 2012, Fabrication and characterization of dense chitosan/polyvinyl-alcohol/poly-lactic-acid blend membranes, Fiber Polym., 13, 571, 10.1007/s12221-012-0571-4
Zakaria, 2013, Mechanical properties and morphological characterization of PLA/chitosan/epoxidized natural rubber composites, Adv. Mater. Sci. Eng., 3
Arrieta, 2016, Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites, Polym. Degrad. Stab., 132, 145, 10.1016/j.polymdegradstab.2016.02.027
Nofar, 2017
Nofar, 2016, Effects of nano-/micro-sized additives and the corresponding induced crystallinity on the extrusion foaming behavior of PLA using supercritical CO2, Mater. Des., 101, 24, 10.1016/j.matdes.2016.03.147
Keshtkar, 2014, Extruded PLA/clay nanocomposite foams blown with supercritical CO2, Polymer, 55, 4077, 10.1016/j.polymer.2014.06.059
Ameli, 2013, Processing and characterization of solid and foamed injection-molded polylactide with talc, J. Cell. Plast., 49, 351, 10.1177/0021955X13481993
Ameli, 2014, Development of high void fraction polylactide composite foams using injection molding: mechanical and thermal insulation properties, Compos. Sci. Technol., 90, 88, 10.1016/j.compscitech.2013.10.019
Ameli, 2015, Development of high void fraction polylactide composite foams using injection molding: crystallization and foaming behaviors, Chem. Eng., 262, 78, 10.1016/j.cej.2014.09.087
Najafi, 2015, Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams, Eur. Polym. J., 73, 455, 10.1016/j.eurpolymj.2015.11.003
Nofar, 2015, Development of polylactide bead foam with double crystal melting peak structure, Polymer, 69, 83, 10.1016/j.polymer.2015.05.048
Nofar, 2015, A novel technology to manufacture biodegradable polylactide bead foam products, Mater. Des., 83, 413, 10.1016/j.matdes.2015.06.052
Park CB, Nofar M. A method for the preparation of PLA bead foams. Int Appl Patent No: PCT/NL2013/050231, WO 2014158014 A1 (US 20160039990 A1).
Nofar, 2012, Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA, Polymer, 53, 3341, 10.1016/j.polymer.2012.04.054
Nofar, 2014, Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He, Polymer
Nofar, 2014, The thermal behavior of polylactide with different d-lactide content in the presence of dissolved CO2, Macromol. Mater. Eng., 299, 1232, 10.1002/mame.201300474
Nofar, 2013, Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures, Polymer, 54, 2382, 10.1016/j.polymer.2013.02.049
Najafi, 2014, Rheological and foaming behavior of linear and branched polylactides, Rheol. Acta, 53, 779, 10.1007/s00397-014-0801-3
Nofar, 2011, Crystallization kinetics of linear and long-chain-branched polylactide, Ind. Eng. Chem. Res., 50, 13789, 10.1021/ie2011966
Wang, 2012, Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity, Chem. Eng. Sci., 75, 390, 10.1016/j.ces.2012.02.051
Nofar, 2018, Rheological, thermal, and foaming behaviors of different polylactide grades, Int. J. Mater. Sci. Res., 1, 16, 10.18689/ijmsr-1000103
Liao, 2012, Solvent free generation of open and skinless foam in poly(l-lactic acid)/poly(d,l-lactic acid) blends using carbon dioxide, Ind. Eng. Chem. Res., 51, 6722, 10.1021/ie3000997
Pavia, 2012, Polymeric scaffolds based on blends of poly-l-lactic acid (PLLA) with poly-d-l-lactic acid (PLA) prepared via thermally induced phase separation (TIPS): demixing conditions and morphology, Polym. Bull., 70, 563, 10.1007/s00289-012-0861-4
Jia, 2015, Cell morphology and improved heat resistance of microcellular poly(l-lactide) foam via introducing stereocomplex crystallites of PLA, Ind. Eng. Chem. Res., 54, 2476, 10.1021/ie504345y
Wang, 2017, Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging, Chem. Eng., 327, 1151, 10.1016/j.cej.2017.07.024
Preechawong, 2005, Preparation and characterization of starch/poly(l-lactic acid) hybrid foams, Carbohydr. Polym., 59, 329, 10.1016/j.carbpol.2004.10.003
Mihai, 2007, Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends, Macromol. Biosci., 7, 907, 10.1002/mabi.200700080
Zhang, 2007, Biodegradable foams of poly(lactic acid)/starch. I. Extrusion condition and cellular size distribution, J. Appl. Polym. Sci., 106, 857, 10.1002/app.26715
Zhang, 2007, Biodegradable foams of poly(lactic acid)/starch. II. Cellular structure and water resistance, J. Appl. Polym. Sci., 106, 3058, 10.1002/app.26697
Hao, 2008, Study of different effects on foaming process of biodegradable PLA/starch composites in supercritical/compressed carbon dioxide, J. Appl. Polym. Sci., 109, 2679, 10.1002/app.27861
Lee, 2008, Preparation and characterization of tapioca starch-poly(lactic acid)-Cloisite NA nanocomposite foams, J. Appl. Polym. Sci., 110, 2337, 10.1002/app.27730
Lee, 2009, Tapioca starch-poly(lactic acid)-Cloisite 30B nanocomposite foams, Polym. Compos., 30, 665, 10.1002/pc.20664
Teixeira, 2014, Starch/fiber/poly(lactic acid) foam and compressed foam composites, RSC Adv., 4, 6616, 10.1039/c3ra47395c
Yuan, 2009, Preparation, characterization, and foaming behavior of poly(lactic acid)/poly(butylene adipate-co-butylene terephthalate) blend, Polym. Eng. Sci., 49, 1004, 10.1002/pen.21287
Pilla, 2010, Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends, Mater. Sci. Eng. C, 30, 255, 10.1016/j.msec.2009.10.010
Li, 2011, Effects of nanoclay on the morphology and physical properties of solid and microcellular injection molded polyactide/poly(butylenes adipate-co-terephthalate) (PLA/PBAT) nanocomposites and blends, J. Biobaased Mater. Bioenergy, 5, 442, 10.1166/jbmb.2011.1182
Shi, 2016, Microcellular foaming of polylactide and poly(butylene adipate-co-terphathalate) blends and their CaCO3 reinforced nanocomposites using supercritical carbon dioxide, Polym. Adv. Technol., 27, 550, 10.1002/pat.3768
Zhang, 2017, Enhancing the melt strength of poly(lactic acid) via microcrosslinking and blending with poly (butylene adipate-co-butylene terephthalate) for the preparation of foam, J. Polym. Environ., 25, 1335, 10.1007/s10924-016-0911-3
Kang, 2018, Preparation of open-porous stereocomplex PLA/PBAT scaffolds and correlation between their morphology, mechanical behavior, and cell compatibility, RSC Adv., 8, 12933, 10.1039/C8RA01305E
Shi, 2018, Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate-co-terephthalate) blends, RSC Adv., 8, 11850, 10.1039/C8RA01570H
Zhao, 2013, Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends, Ind. Eng. Chem. Res., 52, 2569, 10.1021/ie301573y
Guan, 2013, Fabrication and characterization of PLA/PHBV-chitin nanocomposites and their foams, J. Polym. Environ., 22, 119, 10.1007/s10924-013-0625-8
Ji, 2012, Fabrication of poly-dl-lactide/polyethylene glycol scaffolds using the gas foaming technique, Acta Biomater., 8, 570, 10.1016/j.actbio.2011.09.028
Zhang, 2013, Processing and characterization of supercritical CO2 batch foamed poly(lactic acid)/poly(ethylene glycol) scaffold for tissue engineering application, J. Appl. Polym. Sci., 130, 3066, 10.1002/app.39523
Chen, 2015, Fabrication of polylactic acid/polyethylene glycol (PLA/PEG) porous scaffold by supercritical CO2 foaming and particle leaching, Polym. Eng. Sci., 55, 1339, 10.1002/pen.24073
Wang, 2013, Study on the effect of dispersion phase morphology on porous structure of poly (lactic acid)/poly (ethylene terephthalate glycol-modified) blending foams, Polymer, 54, 5839, 10.1016/j.polymer.2013.08.050
Ma, 2012, Preparation and foaming extrusion behavior of polylactide acid/polybutylene succinate/montmorillonoid nanocomposite, J. Cell. Plast., 48, 191, 10.1177/0021955X11434182
Zhou, 2014, Mechanical properties of PLA/PBS foamed composites reinforced by organophilic montmorillonite, J. Appl. Polym. Sci., 131, 10.1002/app.40773
Yu, 2015, Effect of poly(butylenes succinate) on poly(lactic acid) foaming behavior: formation of open cell structure, Ind. Eng. Chem. Res., 54, 6199, 10.1021/acs.iecr.5b00477
Shi, 2018, Effect of poly(butylenes succinate) on the microcellular foaming of polylactide using supercritical carbon dioxide, J. Polym. Res., 25, 10.1007/s10965-018-1620-5
Zhao, 2016, Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends, J. Mech. Behav. Biomed. Mater., 53, 59, 10.1016/j.jmbbm.2015.08.002
Zhao, 2016, Microcellular injection molded polylactic acid/poly (ε-caprolactone) blends with supercritical CO2: correlation between rheological properties and their foaming behavior, Polym. Eng. Sci., 56, 939, 10.1002/pen.24323
Lv, 2018, Fabrication of novel open-cell foams of poly(ε-caprolactone)/poly(lactic acid) blends for tissue-engineering scaffolds, Ind. Eng. Chem. Res., 57, 12951, 10.1021/acs.iecr.8b02233
Pradeep, 2017, Investigation of thermal and thermomechanical properties of biodegradable PLA/PBSA composites processed via supercritical fluid-assisted foam injection molding, Polymers, 9, 22, 10.3390/polym9010022
Kramschuster, 2009, An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds, J. Biomed. Mater. Res. B Appl. Biomater., 9999B, 366
Yao, 2007, Physical characteristics of PLLA/PMMA blends and their CO2 blowing foams, J. Cell. Plast., 43, 385, 10.1177/0021955X07079209
Velasco, 2010, Preparation in supercritical CO2 of porous poly(methyl methacrylate)–poly(l-lactic acid) (PMMA–PLA) scaffolds incorporating ibuprofen, J. Supercrit. Fluids, 54, 335, 10.1016/j.supflu.2010.05.012
Kohlhoff, 2011, Open cell microcellular foams of polylactic acid (PLA)-based blends with semi-interpenetrating polymer networks, Macromol. Mater. Eng., 296, 770, 10.1002/mame.201000371
Zhou, 2011, Fabrication of tissue engineering scaffolds through solid-state foaming of immiscible polymer blends, Biofabrication, 3, 10.1088/1758-5082/3/4/045003
Liao, 2014, Unique interfacial and confined porous morphology of PLA/PS blends in supercritical carbon dioxide, RSC Adv., 4, 45109, 10.1039/C4RA07592G
Tang, 2011, Autoclave preparation of expanded polypropylene/poly(lactic acid) blend bead foams with a batch foaming process, J. Cell. Plast., 47, 429, 10.1177/0021955X11406004
Bao, 2013, Preparation of nanocellular foams from polycarbonate/poly(lactic acid) blend by using supercritical carbon dioxide, J. Polym. Res., 20, 10.1007/s10965-013-0290-6
Yoon, 2015, Solid heat-expandable polylactide-poly(methyl methacrylate) foam precursors prepared by immersion in liquid carbon dioxide, J. Mater. Sci., 50, 7208, 10.1007/s10853-015-9275-7
Zhao, 2017, Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid), Polym. Degrad. Stab., 146, 277, 10.1016/j.polymdegradstab.2017.11.003
Zhou, 2018, Thermal and rheological properties of poly(lactic acid)/low-density polyethylene blends and their supercritical CO2 foaming behavior, J. Polym. Environ., 26, 3564, 10.1007/s10924-018-1240-5
Mi, 2013, Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding, Mater. Sci. Eng. C, 33, 4767, 10.1016/j.msec.2013.07.037
Barmouz, 2017, Statistical and experimental investigation on low density microcellular foaming of PLA-TPU/cellulose nano-fiber bio-nanocomposites, Polym. Test., 61, 300, 10.1016/j.polymertesting.2017.05.032
Barmouz, 2018, Foaming and thermal characteristics of bio-based polylactic acid–thermoplastic polyurethane blends, J. Cell. Plast., 54, 931, 10.1177/0021955X18793841
Song, 2015, Design and characterization of biocompatible shape memory polymer (SMP) blend foams with a dynamic porous structure, Polymer, 56, 82, 10.1016/j.polymer.2014.09.062
Jia, 2015, Foaming and damping properties of ethylene vinyl-acetate copolymer/polylactic acid blends, J. Macromol. Sci., Part B: Phys., 54, 190, 10.1080/00222348.2014.998556