Poly(amide-imide) bearing imidazole groups/sulfonated polyimide blends for low humidity and medium temperature proton exchange membranes

Springer Science and Business Media LLC - Tập 22 - Trang 1-15 - 2015
Elaheh Kowsari1, Vahid Ansari1, Abbas Moradi2, Alireza Zare1, Mehrzad Mortezaei2,3
1Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
2Islamic Azad University, Tehran, Iran
3Polymer Engineering Group, Composite Science and Technology Research Center, Tehran, Iran

Tóm tắt

A poly(amide-imide) (PAI) bearing imidazole groups on the polymer chain was synthesized via direct polycondensation of a synthesized diacid-diimide and 4,4′-(1,4-Phenylenediisopropylidene) bisaniline (PDBA). Diacide-diimide was synthesized by the condensation of an amino acid compound, (S)-(+)-Histidine hydrochloride monohydrate and 3,3′,4,4′-Benzophenone tetracarboxylic dianhydride (BTDA). On the other hand, a sulfonated polyimide (SPI) was also synthesized by the solution imidization of sulfonated, (4,4-diaminostilbene-2,2-disulfonic acid) (DSDSA) and non-sulfonated, 4,4′-(1,4-Phenylenediisopropylidene) bisaniline (PDBA) diamines in reaction with a six-membered naphthalene base dianhydride, 1,4,5,8-Naphthalenetetracarboxylic dianhydride (NTDA). A strong and flexible SPI membrane with good uniformity and proper thermal and mechanical properties was achieved. The SPI was then blended with different amounts of PAI and doped with phosphoric acid (PA), in order to investigate the blending influence of PAI in PA-doped blend membranes compared to the pure SPI membrane. It was found that a proper amount of PAI could effectively improve the water uptake, IEC and proton conductivity of the PA doped SPI/PAI membranes. Nevertheless the excess PAI negatively affected the membrane properties. The pure SPI with an IEC of 1.76 meq.g−1 showed a proton conductivity of 29.4 mS cm−1 at 120 °C, while PA doped SPI/PAI-10 % (w/w) as the most optimal PAI containing sample, with an IEC of 2.23, showed a proton conductivity of 69.7 mS cm−1 at 140 °C. The proton conductivity measurements were performed at 40 % relative humidity.

Tài liệu tham khảo

Zhang H, Shen PK (2012) Chem Rev 112:2780–2832 Hickner MA, Ghassemi H, Kim YS, Einsla BR (2004) Chem Rev 104:4587–4612 Arslantas A, Sinirlioglu D, Eren F, Muftuoglu AE, Bozkurt A (2014) J Polym Res 21:437 Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) Appl Energy 88:981–1007 Abu-Saied MA, Fontananova E, Drioli E, Eldin MSM (2013) J Polym Res 20:187 Zhang J, Xie Z, Zhang J, Tang Y, Song C (2006) J Power Sources 160:872–891 Einsla ML, Kim YS, Hawley M, Lee HS, McGrath JE, Liu B, Guiver MD, Pivovar BS (2008) Chem Mater 20:5636–5642 Bose S, Kuila T, Nguyen TXH, Kim NH, Lau KT, Lee JH (2011) Prog Polym Sci 36:813–843 Ma L, Xu J, Han S, Yang M, Wang Z, Ni H, Gui Y (2014) J Polym Res 21:1–10 Chandan A, Hattenberger M, El-Kharouf A, Du S, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W (2013) J Power Sources 231:264–278 Yuan S, Guo X, Aili D, Pan C, Li Q, Fang J (2014) J Membr Sci 454:351–358 Xu JM, Cheng HL, Ma L, Han HL, Huang YS, Wang Z (2014) J Polym Res 21:423 He R, Li Q, Xiao G, Bjerrum NJ (2003) J Membr Sci 226:169–184 Seel DC, Benicewicz BC (2012) J Membr Sci 405:57–67 Mader JA, Benicewicz BC (2010) Macromolecules 43:6706–6715 Lee KH, Lee SY, Shin DW, Wang C, Ahn SH, Lee KJ, Guiver MD, Lee YM (2014) Polymer 55:1317–1326 Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M (2006) J Am Chem Soc 128:1762–1769 Hu Z, Yin Y, Kita H, Okamoto KI, Suto Y, Wang H, Kawasato H (2007) Polymer 48:1962–1971 Yin Y, Yamada O, Tanaka K, Okamoto K, Liu S, Ye H, Zhou Y, Zhao J, Yanai H, Sato T (2006) Polym J 38:197–219 Lee CH, Park CH, Lee YM (2008) J Membr Sci 313:199–206 Einsla BR, Kim YS, Hickner MA, Hong YT, Hill ML, Pivovar BS, McGrath JE (2005) J Membr Sci 255:141–148 Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Prog Polym Sci 37:907–974 Akbarian-Feizi L, Mehdipour-Ataei S, Yeganeh H (2010) Int J Hydrog Energy 35:9385–9397 Jiang G, Qiao J, Hong F (2012) Int J Hydrog Energy 37:9182–9192 Seo DW, Lim YD, Lee SH, Jeong IS, Kim DI, Lee JH, Kim WG (2012) Int J Hydrog Energy 37:6140–6147 Sinirlioglu D, Muftuoglu AE, Bozkurt A (2013) J Polym Res 20:242 Zhao C, Lin H, Han M, Na H (2010) J Membr Sci 353:10–16 Li X, Liu C, Zhang S, Yu G, Jian X (2012) J Membr Sci 423:128–135 Lin HL, Hu CR, Lai SW, Yu TL (2012) J Membr Sci 389:399–406 Li Q, Rudbeck HC, Chromik A, Jensen JO, Pan C, Steenberg T, Calverley M, Bjerrum N, Kerres J (2010) J Membr Sci 347:260–270 Yu S, Benicewicz BC (2009) Macromolecules 42:8640–8648 Xu H, Chen K, Guo X, Fang J, Yin (2007) Polymer 48:5556–5564 Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) Prog Polym Sci 34:449–477 Pu HT, Qiao L, Liu QZ, Yang ZL (2005) Eur Polym J 41:2505–2510 Pu H, Meyer WH, Wegner G (2002) J Polym Sci B Polym Phys 40:663–669 Pu H, Wang D (2006) Electrochim Acta 51:5612–5617 Hazarika M, Jana T (2012) ACS Appl Mater Interfaces 4:5256–5265 Wu H, Shen X, Cao Y, Li Z, Jiang Z (2014) J Membr Sci 451:74–84 Boaventura M, Ponce M, Brandao L, Mendes A, Nunes S (2010) Int J Hydrog Energy 35:12054–12064 Wasserscheid P, Welton T (2008) Ionic liquids in synthesis, vol. 1. Wiley Online Library, Weinheim, Germany Mistri EA, Mohanty AK, Banerjee S (2012) J Membr Sci 411:117–129 Zhang F, Li N, Cui Z, Zhang S, Li S (2008) J Membr Sci 314:24–32 Li N, Cui Z, Zhang S, Xing W (2007) J Membr Sci 295:148–158 Wu S, Qiu Z, Zhang S, Yang X, Yang F, Li Z (2006) Polymer 47:6993–7000 Yang J, Li Q, Jensen JO, Pan C, Cleemann LN, Bjerrum NJ, He R (2012) J Power Sources 205:114–121 Schmidt C, Schmidt‐Naake G (2007) Macromol Mater Eng 292:1164–1175 He R, Li Q, Bach A, Jensen JO, Bjerrum NJ (2006) J Membr Sci 277:38–45 Alberti G, Casciola M, Massinelli L, Bauer B (2001) J Membr Sci 185:73–81