Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review

Springer Science and Business Media LLC - Tập 40 Số 6 - Trang 2395-2420 - 2018
Joanna Beata Kowalska1, Ryszard Mazurek1, Michał Gąsiorek1, Tomasz Zaleski1
1Department of Soil Science and Soil Protection, Institute of Soil Science and Agrophysics, University of Agriculture, Al. Mickiewicza 21, 31-120, Kraków, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

Adamu, C. L., & Nganje, T. N. (2010). Heavy metal contamination of surface soil in relationship to land use patterns: A case study of Benue State, Nigeria. Materials Sciences and Applications, 1, 127–134.

Al-Anbari, R., Abdul Hameed, M. J., Obaidy, Al, & Fatima, H. A. A. (2015). Pollution loads and ecological risk assessment of heavy metals in the urban soil affected by various anthropogenic activities. International Journal of Advanced Research, 2, 104–110.

Bąbelewska, A. (2010). The impact of industrial emissions on heavy metal and sulphur contamination level within the area of the projected Jurassic National Park. Prądnik Studies and Reports of the Prof Władysław Szafer Museum, 20, 135–145.

Baran, A., Wieczorek, J., Mazurek, R., Urbański, K., & Klimkowicz-Pawlas, A. (2018). Potential ecological risk assessment and predicting zinc accumulation in soils. Environmental Geochemistry and Health, 40(1), 435–450.

Bates, R. L., & Jackson, J. A. (1984). Dictionary of geological terms. New York: Anchor Books. A Division of Random House Inc.

Begum, K., Mohiuddin, K. M., Zakir, H. M., Moshfiqur Rahman, M., & Nazmul Hasan, M. (2014). Heavy metal pollution and major nutrient elements assessment in the soils of Bogra City in Bangladesh. Canadian Chemical Transactions, 3, 316–326.

Błońska, E., Lasota, J., Szuszkiewicz, M., Łukasik, A., & Klamerus-Iwan, A. (2016). Assessment of forest soil contamination in Krakow surroundings in relation to the type of stand. Environmental Earth Sciences. https://doi.org/10.1007/s12665-016-6005-7 .

Bourennane, H., Douay, F., Sterckeman, T., Villanneau, E., Ciesielski, H. & King, D. (2010). Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma, 157, 165–174.

Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N. & Coimbra, A. (2005). Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecological Indicators, 5, 151–169.

Chen, Z., Chen, J., Tian, S., & Xu, B. (2016). Application of fractal content-gradient method for delineating geochemical anomalies associated with copper occurrences in the Yangla ore field. China Geoscience Frontiers, 8(1), 189–197.

Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, 143–153.

De Santo, A. V., Fierro, A., Berg, B., Rutigliano, F. A., & De Marco, A. (2002). Heavy metals and litter decomposition in coniferous forests. Developments in Soil Science, 28, 63–78.

Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science & Biotechnology, 12, 335–353.

Ekwere, A. S., Ekwere, S. J., Ephraim, B. E., & Ugbaja, A. N. (2014). Distribution of heavy metals in urban soils; a case study of Calabar Area, South-Eastern Nigeria. Geosciences, 4, 23–28.

Elias, P., & Gbadegesin, A. (2011). Spatial relationships of urban land use, soils and heavy metal concentrations in Lagos Mainland Area. Journal of Applied Sciences and Environmental Management, 15, 391–399.

Fagbote, E. O., & Olanipekun, E. O. (2010). Evaluation of the status of heavy metal pollution of soil and plant (Chromolaena odorata) of Agbabu Bitumen Deposit Area, Nigeria. American-Eurasian Journal of Scientific Research, 4, 241–248.

Gałuszka, A. (2007). A review of geochemical background concepts and an example using data from Poland. Environmental Geology, 52, 861–870.

Gałuszka, A., & Migaszewski, Z. (2011). Geochemical background: An environmental perspective. Mineralogia, 42, 7–17.

Gao, X., & Chen, C. T. A. (2012). Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Research, 46, 1901–1911.

Garrett, R. G. (1991). The management, analysis and display of exploration geochemical data. Exploration geochemistry workshop. Ottawa Geological Survey of Canada; Open File 2390.

Gąsiorek, M., Kowalska, J., Mazurek, R., & Pająk, M. (2017). Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere, 179, 148–158.

Ghazaryan, K. A., Gevorgyan, G. A., Movsesyan, H. S., Ghazaryan, N. P. & Grigoryan, K. V. (2015). The evaluation of heavy metal pollution degree in the soils around the Zangezur Copper and Molybdenum Combine, Rome, Italy May 17, pp. 161–166.

Golyeva, A., Zazovskaia, E., & Turova, I. (2014). Properties of ancient deeply transformed man-made soils (cultural layers) and their advances to classification by the example of Early Iron Age sites in Moscow Region. CATENA, 137, 605–610.

Gong, Q., Deng, J., Xiang, Y., Wang, Q., & Yang, L. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19, 230–241.

Grzebisz, W., Cieśla, L., Komisarek, J., & Potarzycki, J. (2002). Geochemical assessment of heavy metals pollution of urban soils. Polish Journal of Environmental Studies, 11, 493–499.

Gu, J. G., Li, Q. S., Fang, J. H., He, B. Y., Fu, H. B., & Tong, Z. J. (2014). Identification of heavy metal sources in there claimed farm land soils of the pearl river estuary in China using a multivariate geostatistical approach. Ecotoxicology and Environmental Safety, 105, 7–12.

Guan, Y., Shao, Ch., & Ju, M. (2014). Heavy metal contamination assessment and partition for industrial and mining gathering areas. International Journal of Environmental Research and Public Health, 11, 7286–7303.

Gutierrez, C., Fernandez, C., Escuer, M., Campos-Herrera, R., Rodríguez & M. E. B., Carbonell, G. (2016). Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity. Environmental Pollution, 213, 184–194.

Hajduk, E., Kaniuczak, J., & Właśniewski, S. (2012). The content of heavy metals in farmland soils from the vicinity of the Stalowa Wola power plant. Soil Science Annual, 63, 22–26.

Håkanson, L. (1980). An ecological risk index for aquatic. Pollution control: A sedimentological approach. Water Research, 14, 975–1001.

Halecki, W., & Gąsiorek, M. (2015). Seasonal variability of microbial biomass phosphorus in urban soils. Science of the Total Environment, 502, 42–47.

Han, D., Cheng, J., Hu, X., Jiang, Z., Mo, L. & Xu, H. (2016). Spatial distribution, risk assessment and source identification of heavy metals in sediments of the Yangtze River Estuary, China. Marine Pollution Bulletin, 115(1–2), 141–148.

Hawkes, H. E., & Webb, J. S. (1962). Geochemistry in mineral exploration (pp. 1–415). New York: Harper & Row.

He, Z. (2015). Heavy metal contamination of soils: Sources, indicators, and assessment. Journal of Environmental Indicators, 9, 17–18.

Hong-gui, D., Teng-feng, G., Ming-hu, L., & Xu, D. (2012). Comprehensive assessment model on heavy metal pollution in soil. International Journal of Electrochemical Science, 7, 5286–5296.

Hovmand, M. F., Kemp, K., Kystol, J., Johnsen, I., Riis-Nielsen, T., & Pacyna, J. M. (2008). Atmospheric heavy metal deposition accumulated in rural forest soils of southern Scandinavia. Environmental Pollution, 155, 537–541.

Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20, 6150–6159.

Inboonchuay, T., Suddhiprakarn, A., Kheoruenromne, I., Anusontpornperm, S., & Gilkes, R. J. (2016). Amounts and associations of heavy metals in paddy soils of the Khorat Basin. Thailand, Geoderma Regional, 7, 120–131.

Inengite, A. K., Abasi, C. Y., & Walter, C. (2015). Application of pollution indices for the assessment of heavy metal pollution in flood impacted soil. International Research Journal of Pure & Applied Chemistry, 8, 175–189.

Jiang, X., Lu, W. X., Zhao, H. Q., Yang, Q. C., & Yang, Z. P. (2014). Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazards and Earth Systems Sciences, 14, 1599–1610.

Kabata-Pendias, A. (2011). Trace elements of soils and plants (4th ed., pp. 28–534). Boca Raton: CRC press, Taylor & Francis Group.

Karczewska, A., & Kabała, C. (2002). Trace elements in soils in the Stołowe Mountains National Park. Szczeliniec, 6, 133–160.

Karim, Z., Qureshi, B. A., & Mumtaz, M. (2015). Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecological Indicators, 48, 358–364.

Kaste, J. M., Bostick, B. C., Heimsath, A. M., Steinnes, E., & Friedland, A. J. (2011). Using atmospheric fallout to date O horizon layers and quantify metal dynamics during decomposition. Geochimica et Cosmochimica Acta, 75, 1642–1661.

Kawahigashi, M., Prokushkin, A., & Sumida, H. (2011). Effect of fire on solute release from O horizons under larch forest in Central Siberian permafrost terrain. Geoderma, 166, 171–180.

Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221–222, 82–90.

Kierczak, J., Pedziwiatr, A., Waroszewski, J., & Modelska, M. (2016). Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate. Geoderma, 268, 78–91.

Kloke, A. (1979). Content of arsenic, cadmium, chromium, fluorine, lead, mercury, and nickel in plants grown on contaminated soils, United Nations-ECE symposium, Geneva, pp. 51–53.

Kouamé, I. K., Kouassi, L. K., Dibi, B., Adou, K. M., Rascanu, I. D. & Romanescu, G. (2013). Potential groundwater pollution risks by heavy metals from agricultural soil in Songon Area (Abidjan, Côte d’Ivoire). Journal of Environmental Protection, 4, 1441–1448.

Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T., & Waroszewski, J. (2016). Soil pollution indices conditioned by medieval metallurgical activity: A case study from Krakow (Poland). Environmental Pollution, 218, 1023–1036.

Li, M. S., & Yang, S. X. (2008). Heavy metal contamination in soils and phytoaccumulation in a manganese mine Wasteland, South China. Air, Soil and Water Research, 1, 31–41.

Li, M., Yang, W., Sun, T., & Jin, Y. (2016). Potential ecological risk of heavy metal contamination in sediments and macrobenthos in coastal wetlands induced by freshwater releases: A case study in the Yellow River Delta, China. Marine Pollution Bulletin, 103, 227–239.

Lis, J., & Pasieczna, A. (1997). Geochemical anomalies of Pb-Zn-Cd in soils of Upper Silesia. Przeglad Geologiczny, 45(2), 182–189.

Liu, R., Wang, M., Chen, W., & Peng, C. (2016). Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environmental Pollution, 210, 174–181.

Long, E. R., MacDonald, D. D., Smith, L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.

Loska, K., Wiechulab, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30, 159–165.

Mahmoudabadi, E., Sarmadian, F., & Nazary Moghaddam, R. (2015). Spatial distribution of soil heavy metals in different land uses of an industrial area of Tehran (Iran). International Journal of Environmental Science and Technology, 12, 3283–3298.

Markiewicz-Patkowska, J., Hursthouse, A., & Przybyla-Kij, H. (2005). The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Environment International, 31, 513–521.

Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background—Can we calculate it? Environmental Geology, 39, 990–1000.

Mazurek, R., & Wieczorek, J. (2007). Mercury concentration in organic and humus horizons of soils in the Babiogórski National Park. Ecological Chemistry and Engineering, 14(5–6), 497–503.

Mazurek R., Kowalska J., Gąsiorek M. & Setlak M. (2016). Micromorphological and physico-chemical analyses of cultural layers in the urban soil of a medieval city—A case study from Krakow, Poland. Catena, 141, 73–84.

Mazurek, R., Kowalska, J., Gąsiorek, M., Zadrożny, P., Józefowska, A. & Zaleski, T. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168, 839–850.

McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2 (Article No. 2000GC000109).

Medyńska-Juraszek, A., & Kabała, C. (2012). Heavy metal pollution of forest soils affected by the copper industry. Journal of Elementology, 17(3), 441–451.

Mmolawa, K. B., Likuku, A. S., & Gaboutloeloe, G. K. (2011). Assessment of heavy metal pollution in soils along major roadside areas in Botswana. African Journal of Environmental Science and Technology, 3, 186–196.

Mohamed, T. A., Mohamed, M. A. K., Rabeiy, R., & Ghandour, M. A. (2014). Application of pollution indices for evaluation of heavy metals in Soil close to phosphate fertilizer plant, Assiut, Egypt. Assiut University Bulletin for Environmental Researches, 17(1), 45–55.

Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

Murtagh, F., & Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? Journal of Classification, 31, 274–295.

Nannoni, F., & Protano, G. (2016). Chemical and biological methods to evaluate the availability of heavy metals in soils of the Siena urban area (Italy). Science of the Total Environment, 568, 1–10.

Nikolaidis, C., Zafiriadis, I., Mathioudakis, V., & Constantinidis, T. (2010). Heavy metal pollution associated with an abandoned lead—Zinc mine in the Kirki Region, NE Greece. Bulletin of Environmental Contamination and Toxicology, 85, 307–312.

Nowrouzi, M., & Pourkhabbaz, A. (2014). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran. Chemical Speciation & Bioavailability, 26, 99.

Obiora, S. C., Chukwu, A., & Davies, T. C. (2016). Heavy metals and health risk assessment of farmland soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria. Journal of African Earth Sciences, 116, 182–189.

Ogunkunle, C. O., & Fatoba, P. O. (2013). Pollution loads and the ecological risk assessment of soil heavy metals around a mega cement factory in Southwest Nigeria. Polish Journal of Environmental Studies, 22, 487–493.

Ololade, I. A. (2014). An assessment of heavy-metal contamination in soils within auto-mechanic workshops using enrichment and contamination factors with geoaccumulation indexes. Journal of Environmental Protection, 5, 970–982.

Omatoso, O. A., & Ojo, O. J. (2015). Assessment of some heavy metals contamination in the soil of river Niger floodplain at Jebba, central Nigeria. Water Utility Journal, 9, 71–80.

Oti Wilberforce, J. O. (2015). Pollution indices and bioaccumulation factors of heavy metals in selected fruits and vegetables from a derelict mine and their associated health implications. International Journal of Environmental Science and Toxicology Research, 3, 9–15.

Pająk, M., Gąsiorek, M., Cygan, A., & Wanic, T. (2015). Concentrations of Cd, Pb and Zn in the top layer of soil and needles of scots pine (Pinus Sylvestris L.); A case study of two extremely different conditions of the forest environment in Poland. Fresenius Environmental Bulletin, 24, 71–76.

Pająk, M., Halecki, W., & Gąsiorek, M. (2017). Accumulative response of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb-Zn ore mining and processing plants: Explicitly spatial considerations of ordinary kriging based on a GIS approach. Chemosphere, 168, 851–859.

Pan, L., Ma, L., Wang, X., & Hou, H. (2016). Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere, 148, 248–254.

Pejman, A., Gholamrez Nabi, B., Saeedi, M., & Baghvanda, A. (2015). A new index for assessing heavy metals contamination in sediments: A case study. Ecological Indicators, 58, 365–373.

Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in Parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241.

Rao, R. C. (1964). The use and interpretation of principal component analysis in applied research. The Indian Journal of Statistics, Series A, 26(4), 329–358.

Redon, P. O., Bur, T., Guiresse, M., Probst, J. L., Toiser, A. & Revel, J. C.  (2013). Modelling trace metal background to evaluate anthropogenic contamination in farmland soils of south-western France. Geoderma, 206, 112–122.

Reimann, C., & De Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337, 91–107.

Reimann, C., & Garret, R. G. (2005). Geochemical background: Concept and reality. Science of the Total Environment, 350, 12–27.

Ripin, S. N. M., Hasan, S., Kamal, M. L., & Hashim, N. M. (2014). Analysis and pollution assessment of heavy metal in soil, Perlis. The Malaysian Journal of Analytical Sciences, 18, 155–161.

Rodríguez, M. J. A., Ramos-Miras, J. J., Boluda, R., & Gil, C. (2013). Spatial relations of heavy metals in farmland and greenhouse soils of a Mediterranean environment region (Spain). Geoderma, 200–201, 180–188.

Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust, treatise on geochemistry. Treatise on Geochemistry, 3, 1–64.

Sadhu, K., Adhikari, K., & Gangopadhyay, A. (2012). Assessment of heavy metal contamination of soils in and around open cast mines of Raniganj area, India. International Journal of Environmental Engineering Research, 2, 77–85.

Salah, E. A., Turki, A. M., & Mahal, S. N. (2015). Chemometric evaluation of the heavy metals in urban soil of Fallujah City, Iraq. Journal of Environmental Protection, 6, 1279–1292.

Sayadi, M. H., Shabani, M., & Ahmadpour, N. (2015). Pollution index and ecological risk of heavy metals in the surface soils of Amir-Abad Area in Birjand City, Iran. Health Scope, 4, 121–137.

Schroth, A. W., Bostick, B. C., Kaste, J. M., & Friedland, A. J. (2008). Lead sequestration and species redistribution during soil matter decomposition. Environmental Science and Technology, 42(10), 3627–3633.

Shu, Y., & Zhai, S. (2014). Study on soil heavy metals contamination of a lead refinery. Chinese Journal of Geochemistry, 33, 393–397.

Smith, L. I. (2002). A tutorial on principal components analysis introduction. Statistics (Ber)., 51, 52.

Sołek-Podwika, K., Ciarkowska, K., & Kaleta, D. (2016). Assessment of the risk of pollution by sulfur compounds and heavy metals in soils located in the proximity of a disused for 20 years sulfur mine (SE Poland). Journal of Environmental Management, 180, 450–458.

Stajic, J. M., Milenkovic, B., Pucarevic, M., Stojic, N., Vasiljevic, I., & Nikezic, D. (2016). Exposure of school children to polycyclic aromatic hydrocarbons, heavy metals and radionuclides in the urban soil of Kragujevac city, Central Serbia. Chemosphere, 146, 68–74.

Su, C., Jiang, L., & Zhang, W. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics, 2, 24–38.

Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–627.

Tang, Q., Li, Y., & Xu, Y. (2015). Land suitability assessment for post-earthquake reconstruction: A case study of Lushan in Sichuan, China. Journal of Geographical Sciences, 25, 865–878.

Tomaškin, J., Tomaškinová, J., Kmeťová, J., & Drimal, M. (2013). The concentration of heavy metals in grassland ecosystems of the central Slovakia national parks. Carpathian Journal of Earth and Environmental Sciences, 8, 35–40.

Valladares, G. S., Camargo, O. A., Carvalho, J. R. P., & Silva, A. M. C. (2009). Assessment of heavy metals in soils of a vineyard region with the use of principal component analysis. Science in Agriculture, 66, 361–367.

Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364.

Wang, Z., Wang, Y., Chen, L., Yan, C., Yan, Y., & Chi, Q. (2015). Assessment of metal contamination in coastal sediments of the Maluan Bay (China) using geochemical indices and multivariate statistical approaches. Marine Pollution Bulletin, 99, 43–53.

Waroszewski, J., Sprafke, T., Kabala, C., Musztyfaga, E., Łabaz, B., & Woźniczka, P. (2017). Aeolian silt contribution to soils on mountain slopes (Mt. Ślęża, southwest Poland). Quaternary Research. https://doi.org/10.1017/qua.2017.76 .

Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99–107.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.

Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W. & Zhang, T. (2015). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148, 71–78.

Xia, P., Meng, X. W., Yin, P., Cao, Z. M., & Wang, X. Q. (2011). Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea. Environmental Pollution, 159, 92–99.

Xu, G., Liu, J., Pei, S., Hu, G., & Kong, X. (2015). Geochemical background and ecological risk of heavy metals in surface sediments from the west Zhoushan Fishing Ground of East China Sea. Environmental Science and Pollution Research, 22, 20283–20294.

Zawadzki, J., Fabijańczyk, P., & Magiera, T. (2007). The influence of forest stand and organic horizon development on soil surface measurement of magnetic susceptibility. Polish Journal of Soil Science, 40(2), 113–124.

Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China: Weathering features, anthropogenic impact and chemical fluxes. Estuarine Coastal Shelf Science, 54, 1051–1070.

Zhang, W., Liu, X., Cheng, H., Zeng, E. Y., & Hu, Y. (2012). Heavy metal pollution in sediments of a typical mariculture zone in South China. Marine Pollution Bulletin, 64, 712–720.

Zhiyuan, W., Dengfeng, W., Huiping, Z., & Zhiping, Q. (2011). Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index. Procedia Environmental Sciences, 10, 1946–1952.

Zhong, L., Liming, L. & Jiewen, Y. (2010). Assessment of heavy metals contamination of paddy soil in Xiangyin county, China. In Symposium 4.1.2 management and protection of receiving environments, 19th world congress of soil science, soil solutions for a Changing World 191—6 August 2010, Brisbane, Australia, pp. 17–20.

Zhou, S., Zhou, K., Cui, Y., Wang, J., & Ding, J. (2015). Identifying geochemical anomalies according to the content and coefficient variance of trance elements. Scientia Geologica Sinica, 50, 1014–1022.