Poliovirus RNA Replication Requires Genome Circularization through a Protein–Protein Bridge
Tài liệu tham khảo
Andino, 1990, A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA, Cell, 63, 369, 10.1016/0092-8674(90)90170-J
Andino, 1990, Substitutions in the protease (3Cpro) gene of poliovirus can suppress a mutation in the 5′ noncoding region, J. Virol., 64, 607, 10.1128/JVI.64.2.607-612.1990
Andino, 1993, Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′- end of viral RNA, EMBO J., 12, 3587, 10.1002/j.1460-2075.1993.tb06032.x
Barton, 1995, Complete replication of poliovirus in vitro, J. Virol., 69, 5516, 10.1128/JVI.69.9.5516-5527.1995
Barton, 1996, Assays for poliovirus polymerase, 3D(Pol), and authentic RNA replication in HeLa S10 extracts, Methods Enzymol., 275, 35, 10.1016/S0076-6879(96)75005-X
Barton, 1999, Translating ribosomes inhibit poliovirus negative-strand RNA synthesis, J. Virol., 73, 10104, 10.1128/JVI.73.12.10104-10112.1999
Buck, 1996, Comparison of the replication of positive-stranded RNA viruses of plants and animals, Adv. Virus Res., 47, 159, 10.1016/S0065-3527(08)60736-8
Deo, 1999, Recognition of polyadenylate RNA by the poly(A)-binding protein, Cell, 98, 835, 10.1016/S0092-8674(00)81517-2
Diez, 2000, Identification and characterization of a host protein required for efficient template selection in viral RNA replication, Proc. Natl. Acad. Sci. USA, 97, 3913, 10.1073/pnas.080072997
Flanegan, 1977, Covalent linkage of a protein to a defined nucleotide sequence at the 5′-terminus of virion and replicative intermediate RNAs of poliovirus, Proc. Natl. Acad. Sci. USA, 74, 961, 10.1073/pnas.74.3.961
Gamarnik, 1996, Replication of poliovirus in Xenopus oocytes requires two human factors, EMBO J., 15, 5988, 10.1002/j.1460-2075.1996.tb00985.x
Gamarnik, 1997, Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA, RNA, 3, 882
Gamarnik, 1998, Switch from translation to RNA replication in a positive-stranded RNA virus, Genes Dev., 12, 2293, 10.1101/gad.12.15.2293
Gingras, 1999, eIF4 initiation factors, Annu. Rev. Biochem., 68, 913, 10.1146/annurev.biochem.68.1.913
Gorlach, 1994, The mRNA poly(A)-binding protein, Exp. Cell Res., 211, 400, 10.1006/excr.1994.1104
Grundhoff, 1999, Characterization of DP103, a novel DEAD box protein that binds to the Epstein-Barr virus nuclear proteins EBNA2 and EBNA3C, J. Biol. Chem., 274, 19136, 10.1074/jbc.274.27.19136
Hahn, 1987, Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences, J. Mol. Biol., 198, 33, 10.1016/0022-2836(87)90455-4
Herold, 2000, Poliovirus requires a precise 5′ end for efficient positive-strand RNA synthesis, J. Virol., 74, 6394, 10.1128/JVI.74.14.6394-6400.2000
Herold, 1999, A human RNA viral cysteine proteinase that depends upon a unique Zn2+- binding finger connecting the two domains of a papain-like fold, J. Biol. Chem., 274, 14918, 10.1074/jbc.274.21.14918
Joachims, 1999, Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro, J. Virol., 73, 718, 10.1128/JVI.73.1.718-727.1999
Kerekatte, 1999, Cleavage of Poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo, J. Virol., 73, 709, 10.1128/JVI.73.1.709-717.1999
Kiledjian, 1995, Identification of two KH domain proteins in the alpha-globin mRNP stability complex, EMBO J., 14, 4357, 10.1002/j.1460-2075.1995.tb00110.x
Klovins, 1999, A long-range pseudoknot in Qbeta RNA is essential for replication, J. Mol. Biol., 294, 875, 10.1006/jmbi.1999.3274
Klovins, 1998, A long-range interaction in Qbeta RNA that bridges the thousand nucleotides between the M-site and the 3′ end is required for replication, RNA, 4, 948, 10.1017/S1355838298980177
Kuhn, 1996, Xenopus poly(A) binding protein, J. Mol. Biol., 256, 20
Larsen, 1980, The structure of poliovirus replicative form, Nucleic Acids Res., 8, 1217, 10.1093/nar/8.6.1217
Lee, 1977, A protein covalently linked to poliovirus genome RNA, Proc. Natl. Acad. Sci. USA, 74, 59, 10.1073/pnas.74.1.59
Molla, 1991, Cell-free, de novo synthesis of poliovirus, Science, 254, 1647, 10.1126/science.1661029
Ostareck-Lederer, 1998, Cytoplasmic regulatory functions of the KH-domain proteins hnRNPs K and E1/E2, Trends Biochem. Sci., 23, 409, 10.1016/S0968-0004(98)01301-2
Parsley, 1997, Poly (rC) binding protein 2 forms a ternary complex with the 5′- terminal sequences of poliovirus RNA and the viral 3CD proteinase, RNA, 3, 1124
Paul, 1998, Protein-primed RNA synthesis by purified poliovirus RNA polymerase, Nature, 393, 280, 10.1038/30529
Pelletier, 1988, Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5′ noncoding region, Mol. Cell. Biol., 8, 1103, 10.1128/MCB.8.3.1103
Pilipenko, 1996, Cis-element, oriR, involved in the initiation of (−) strand poliovirus RNA, EMBO J., 15, 5428, 10.1002/j.1460-2075.1996.tb00926.x
Racaniello, 1981, Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome, Proc. Natl. Acad. Sci. USA, 78, 4887, 10.1073/pnas.78.8.4887
Raju, 1999, In vivo addition of poly(A) tail and AU-rich sequences to the 3′ terminus of the Sindbis virus RNA genome, J. Virol., 73, 2410, 10.1128/JVI.73.3.2410-2419.1999
Rohll, 1994, The 5′-untranslated regions of picornavirus RNAs contain independent functional domains essential for RNA replication and translation, J. Virol., 68, 4384, 10.1128/JVI.68.7.4384-4391.1994
Rohll, 1995, The 3′ untranslated region of picornavirus RNA, J. Virol., 69, 7835, 10.1128/JVI.69.12.7835-7844.1995
Sachs, 1993, Poly(A) tail metabolism and function in eucaryotes, J. Biol. Chem., 268, 22955, 10.1016/S0021-9258(19)49408-8
Sachs, 1987, A similar domain of yeast poly (A)–binding protein is necessary and sufficient for RNA binding and cell viability, Mol. Cell. Biol., 7, 3268, 10.1128/MCB.7.9.3268
Sachs, 1997, Starting at the beginning, middle, and end, Cell, 89, 831, 10.1016/S0092-8674(00)80268-8
Sarnow, 1989, Role of 3′-end sequences in infectivity of poliovirus transcripts made in vitro, J. Virol., 63, 467, 10.1128/JVI.63.1.467-470.1989
Silvera, 1999, The N-terminal K homology domain of the poly(rC)-binding protein is a major determinant for binding to the poliovirus 5′-untranslated region and acts as an inhibitor of viral translation, J. Biol. Chem., 274, 38163, 10.1074/jbc.274.53.38163
Simoes, 1991, An RNA hairpin at the extreme 5′ end of the poliovirus RNA genome modulates viral translation in human cells, J. Virol., 65, 913, 10.1128/JVI.65.2.913-921.1991
Spagnolo, 2000, Host protein interactions with the 3′ end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication, J. Virol., 74, 5053, 10.1128/JVI.74.11.5053-5065.2000
Spector, 1975, Studies on the function of polyadenylic acid on poliovirus RNA, Cell, 6, 41, 10.1016/0092-8674(75)90071-9
Todd, 1997, Replication-competent picornaviruses with complete genomic RNA 3′ noncoding region deletions, J. Virol., 71, 8868, 10.1128/JVI.71.11.8868-8874.1997
Trono, 1988, Translation in mammalian cells of a gene linked to the poliovirus 5′ noncoding region, Science, 241, 445, 10.1126/science.2839901
Tsai, 1999, Sufficient length of a poly(A) tail for the formation of a potential pseudoknot is required for efficient replication of bamboo mosaic potexvirus RNA, J. Virol., 73, 2703, 10.1128/JVI.73.4.2703-2709.1999
Wang, 1999, An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro, Mol. Cell. Biol., 19, 4552, 10.1128/MCB.19.7.4552
Wells, 1998, Circularization of mRNA by eukaryotic translation initiation factors, Mol. Cell, 2, 135, 10.1016/S1097-2765(00)80122-7
Yogo, 1972, Polyadenylic acid at the 3′-terminus of poliovirus RNA, Proc. Natl. Acad. Sci. USA, 69, 1877, 10.1073/pnas.69.7.1877
You, 1999, A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′- and 3′-terminal complementary sequence motifs of the viral RNA, J. Biol. Chem., 274, 33714, 10.1074/jbc.274.47.33714
Yu, 2000, A stem-loop motif formed by the immediate 5′ terminus of the bovine viral diarrhea virus genome modulates translation as well as replication of the viral RNA, J. Virol., 74, 5825, 10.1128/JVI.74.13.5825-5835.2000