Polaroid Operators with SVEP and Perturbations of Property (gw)

Mediterranean Journal of Mathematics - Tập 6 - Trang 461-470 - 2009
Mohamed Amouch1
1Department of Mathematics, Semlalia Science Faculty, Cadi Ayyad University, Marrakech, Morocco

Tóm tắt

Let $${\mathcal{L}(X)}$$ be the algebra of all bounded linear operators on X and $${\mathcal{P}S(X)}$$ be the class of polaroid operators with the single-valued extension property. The property (gw) holds for $${T \in \mathcal{L}(X)}$$ if the complement in the approximate point spectrum of the semi-B-essential approximate point spectrum coincides with the set of all isolated points of the spectrum which are eigenvalues of the spectrum. In this note we focus on the stability of the property (gw) under perturbations: we prove that, if $${T \in \mathcal{P}S(X)}$$ and A (resp. Q) is an algebraic (resp. quasinilpotent) operator, then the property (gw) holds for f(T * + A *) (resp. f(T * + Q*)) for every analytic function f in σ(T + A) (resp. σ(T + Q)). Some applications are also given.

Tài liệu tham khảo

Aiena P.: Fredholm and Local Spectral Theory with Application to Multipliers. Kluwer Academic Publishers, Dordrecht (2004) Aiena P., Guillen J.R.: Weyl’s theorem for perturbations of paranormal operators. Proc. Amer. Math. Soc. 135, 2443–2451 (2007) Aiena P., Peña P.: Variations on Weyl’s theorem. J. Math. Anal. Appl. 324, 566–579 (2006) Amouch M.: Weyl type theorems for operators satisfying the single-valued extension property. J. Math. Anal. Appl. 326, 1476–1484 (2007) Amouch M.: Generalized a-Weyl’s theorem and the single-valued extension property. Extracta Math. 21((no. 1), 51–65 (2006) Amouch M., Zguitti H.: On the equivalence of Browder’s and generalized Browder’s theorem. Glasg. Math. J. 48, 179–185 (2006) Amouch M., Zguitti H.: A note on the a-Browder’s and a-Weyl’s theorems. Math. Bohem. 133(no. 2), 157–166 (2008) Amouch M., Berkani M.: On the property (gw). Mediterr. J. Math 5, 371–378 (2008) Berkani M.: Restriction of an operator to the range of its powers. Studia Math. 140(no. 2), 163–175 (2000) Berkani M.: On the equivalence of Weyl and generalized Weyl theorem. Acta Math. Sin. (Engl. Ser.) 23(no. 1), 103–110 (2007) Berkani M., Amouch M.: Preservation of property (gw) under perturbations. Acta Sci. Math. (Szeged) 74, 769–781 (2008) Berkani M., Arroud A.: Generalized Weyl’s theorem and Hyponormal operators. J. Aust. Math. Soc. 76, 291–302 (2004) Berkani M., Koliha J.J.: Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged) 69, 359–376 (2003) Cao X., Guo M., Meng B.: Weyl type theorems for p-hyponormal and Mhyponormal operators. Studia Math. 163, 177–188 (2004) Coburn L.A.: Weyl’s theorem for nonnormal operators. Michigan Math. J. 13, 285–288 (1966) B.P. Duggal, Polaroid operators, SVEP and Perturbed Browder, Weyl theorems, Rend. Circ. Mat. Palermo (2) 56 (2007), 317–330. Dugall B.P.: Hereditarily normaloid operators. Extracta Math. 20, 203–217 (2005) Duggal B.P., Harte R., Jeon I.H.: Polaroid operators and Weyl’s theorem. Proc. Amer. Math. Soc. 132, 1345–1349 (2004) Han Y.M., Lee W.Y.: Weyl’s theorem holds for algebraically hyponormal operators. Proc. Amer. Math. Soc. 128, 2291–2296 (2000) Harte R.E., Lee W.Y.: Another note on Weyl’s theorem. Trans. Amer. Math. Soc. 349, 2115–2124 (1997) L. Laursen and M.M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs. New Series, 20. The Clarendon Press, Oxford University Press, New York, 2000. Lee S.H., Lee W.Y.: On Weyl’s theorem II. Math. Japon. 43, 549–553 (1996) Oudghiri M.: Weyl’s theorem and Browder’s theorem for operators satisfying the SVEP. Studia Math. 163, 85–101 (2004) Rakočević V.: Operators obeying a-Weyl’s theorem. Rev. Roumaine Math. Pures Appl. 34, 915–919 (1989) Rakočević V.: On a class of operators. Mat. Vesnik 37, 423–426 (1985) Wadhwa B.L.: Spectral, M-hyponormal and decomposable operators in Banach space. Czechoslovak Math. J. 23, 483–492 (1973) Tanashi K., Uchiyama A., Chō M.: Isolated points of spectrum of (p,k)-quasihyponormal operators. Linear Algebra Appl. 382, 221–229 (2004)