Polarized transport of membrane and secreted proteins during lumen morphogenesis
Tài liệu tham khảo
Caceres, 2017, Directional fluid transport across organ-blood barriers: physiology and cell biology, Cold Spring Harb. Perspect. Biol., 9, 10.1101/cshperspect.a027847
Sigurbjornsdottir, 2014, Molecular mechanisms of de novo lumen formation, Nat. Rev. Mol. Cell Biol., 15, 665, 10.1038/nrm3871
Camelo, 2021, Cells into tubes: molecular and physical principles underlying lumen formation in tubular organs, Curr. Top. Dev. Biol., 143, 37, 10.1016/bs.ctdb.2020.09.002
Bernascone, 2017, Signaling networks in epithelial tube formation, Cold Spring Harb. Perspect. Biol., 9, 10.1101/cshperspect.a027946
Biggers, 1988, Mammalian blastocyst: transport functions in a developing epithelium, Am. J. Physiol., 255, C419, 10.1152/ajpcell.1988.255.4.C419
Dan, 1960, Cyto-embryology of echinoderms and amphibia, 321, 10.1016/S0074-7696(08)62751-5
Slack, 1973, Intracellular and intercellular potentials in the early amphibian embryo, J. Physiol., 232, 313, 10.1113/jphysiol.1973.sp010272
Selwood, 1983, Cleavage in vivo and in culture in the dasyurid marsupial Antechinus stuartii (macleay), J. Morphol., 176, 43, 10.1002/jmor.1051760105
Leung, 1999, Organogenesis of the Caenorhabditis elegans intestine, Dev. Biol., 216, 114, 10.1006/dbio.1999.9471
Beitel, 2000, Genetic control of epithelial tube size in the Drosophila tracheal system, Development, 127, 3271, 10.1242/dev.127.15.3271
Bagnat, 2007, Genetic control of single lumen formation in the zebrafish gut, Nat. Cell Biol., 9, 954, 10.1038/ncb1621
Deng, 2013, Anion translocation through an Slc26 transporter mediates lumen expansion during tubulogenesis, Proc. Natl. Acad. Sci. USA, 110, 14972, 10.1073/pnas.1220884110
Tonning, 2005, A transient luminal chitinous matrix is required to model epithelial tube diameter in the Drosophila trachea, Dev. Cell, 9, 423, 10.1016/j.devcel.2005.07.012
Devine, 2005, Requirement for chitin biosynthesis in epithelial tube morphogenesis, Proc. Natl. Acad. Sci. USA, 102, 17014, 10.1073/pnas.0506676102
Lowery, 2005, Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products, Development, 132, 2057, 10.1242/dev.01791
Herwig, 2011, Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo, Curr. Biol., 21, 1942, 10.1016/j.cub.2011.10.016
Chan, 2020, Integration of luminal pressure and signalling in tissue self-organization, Development, 147, 10.1242/dev.181297
Torres-Sanchez, 2021, Tissue hydraulics: physics of lumen formation and interaction, Cells Dev., 10.1016/j.cdev.2021.203724
Martin-Belmonte, 2007, PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42, Cell, 128, 383, 10.1016/j.cell.2006.11.051
Bryant, 2010, A molecular network for de novo generation of the apical surface and lumen, Nat. Cell Biol., 12, 1035, 10.1038/ncb2106
Bryant, 2014, A molecular switch for the orientation of epithelial cell polarization, Dev. Cell, 31, 171, 10.1016/j.devcel.2014.08.027
Gálvez-Santisteban, 2012, Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells, Nat. Cell Biol., 14, 838, 10.1038/ncb2541
Datta, 2011, Molecular regulation of lumen morphogenesis, Curr. Biol., 21, R126, 10.1016/j.cub.2010.12.003
Blasky, 2015, Polarized protein transport and lumen formation during epithelial tissue morphogenesis, Annu. Rev. Cell Dev. Biol., 31, 575, 10.1146/annurev-cellbio-100814-125323
Schliffka, 2019, Stay hydrated: basolateral fluids shaping tissues, Curr. Opin. Genet. Dev., 57, 70, 10.1016/j.gde.2019.06.015
Rodriguez-Boulan, 2014, Organization and execution of the epithelial polarity programme, Nat. Rev. Mol. Cell Biol., 15, 225, 10.1038/nrm3775
Stoops, 2014, Trafficking to the apical and basolateral membranes in polarized epithelial cells, J. Am. Soc. Nephrol., 25, 1375, 10.1681/ASN.2013080883
Levic, 2022, Self-organization of apical membrane protein sorting in epithelial cells, FEBS J., 289, 659, 10.1111/febs.15882
Kim, 2021, Deciphering epiblast lumenogenesis reveals proamniotic cavity control of embryo growth and patterning, Sci. Adv., 7, eabe1640, 10.1126/sciadv.abe1640
Navis, 2015, Developing pressures: fluid forces driving morphogenesis, Curr. Opin. Genet. Dev., 32, 24, 10.1016/j.gde.2015.01.010
Paul, 2003, The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system, Development, 130, 4963, 10.1242/dev.00691
Ng, 2005, Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis, Dev. Biol., 286, 114, 10.1016/j.ydbio.2005.07.013
Alvers, 2014, Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling, Development, 141, 1110, 10.1242/dev.100313
Nedvetsky, 2014, Parasympathetic innervation regulates tubulogenesis in the developing salivary gland, Dev. Cell, 30, 449, 10.1016/j.devcel.2014.06.012
Palmer, 2020, Fusion of airways during avian lung development constitutes a novel mechanism for the formation of continuous lumena in multicellular epithelia, Dev. Dyn., 249, 1318, 10.1002/dvdy.215
Dumortier, 2019, Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst, Science, 365, 465, 10.1126/science.aaw7709
Ryan, 2019, Lumen expansion facilitates epiblast-primitive endoderm fate specification during mouse blastocyst formation, Dev. Cell, 51, 684, 10.1016/j.devcel.2019.10.011
Chan, 2019, Hydraulic control of mammalian embryo size and cell fate, Nature, 571, 112, 10.1038/s41586-019-1309-x
Moriwaki, 2007, Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos, Dev. Biol., 312, 509, 10.1016/j.ydbio.2007.09.049
Hoijman, 2015, Mitotic cell rounding and epithelial thinning regulate lumen growth and shape, Nat. Commun., 6, 7355, 10.1038/ncomms8355
Mosaliganti, 2019, Size control of the inner ear via hydraulic feedback, Elife, 8, 10.7554/eLife.39596
Abbas, 2009, Nkcc1 (Slc12a2) is required for the regulation of endolymph volume in the otic vesicle and swim bladder volume in the zebrafish larva, Development, 136, 2837, 10.1242/dev.034215
Gravotta, 2012, The clathrin adaptor AP-1A mediates basolateral polarity, Dev. Cell, 22, 811, 10.1016/j.devcel.2012.02.004
Miranda, 2001, Motif targets E-cadherin to the basolateral cell surface in Madin-Darby canine kidney and LLC-PK1 epithelial cells *, J. Biol. Chem., 276, 22565, 10.1074/jbc.M101907200
Gravotta, 2007, AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells, Proc. Natl. Acad. Sci. USA, 104, 1564, 10.1073/pnas.0610700104
Gut, 1998, The cytoplasmic domains of a β1 integrin mediate polarization in Madin-Darby Canine kidney cells by selective basolateral stabilization*, J. Biol. Chem., 273, 29381, 10.1074/jbc.273.45.29381
Jenkins, 2013, E-cadherin polarity is determined by a multifunction motif mediating lateral membrane retention through ankyrin-G and apical-lateral transcytosis through clathrin, J. Biol. Chem., 288, 14018, 10.1074/jbc.M113.454439
Mays, 1995, Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells, J. Cell Biol., 130, 1105, 10.1083/jcb.130.5.1105
Morton, 2010, Association with β-COP regulates the trafficking of the newly synthesized Na,K-ATPase*, J. Biol. Chem., 285, 33737, 10.1074/jbc.M110.141119
Tokhtaeva, 2009, Assembly with the Na,K-ATPase α1 subunit is required for export of β1 and β2 subunits from the endoplasmic reticulum, Biochemistry, 48, 11421, 10.1021/bi901438z
Stabach, 2008, Ankyrin facilitates intracellular trafficking of α1-Na+-K+-ATPase in polarized cells, Am. J. Physiol.-Cell Physiol., 295, C1202, 10.1152/ajpcell.00273.2008
Farr, 2015, Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin, Mol. Biol. Cell, 26, 4401, 10.1091/mbc.E14-09-1385
Kryvenko, 2021, Maturation of the Na,K-ATPase in the endoplasmic reticulum in health and disease, J. Membr. Biol., 10.1007/s00232-021-00184-z
Farr, 2009, Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells, J. Cell Biol., 186, 269, 10.1083/jcb.200901021
Nelson, 1987, Modulation of fodrin (membrane skeleton) stability by cell-cell contact in Madin-Darby canine kidney epithelial cells, J. Cell Biol., 104, 1527, 10.1083/jcb.104.6.1527
Dubreuil, 2000, Drosophila β spectrin functions independently of α spectrin to polarize the Na,k atpase in epithelial cells, J. Cell Biol., 149, 647, 10.1083/jcb.149.3.647
Nelson, 1987, Ankyrin binding to (Na+ + K+)ATPase and implications for the organization of membrane domains in polarized cells, Nature, 328, 533, 10.1038/328533a0
Nakamura, 2020, Rab10, Crag and Ehbp1 regulate the basolateral transport of Na+K+ATPase in Drosophila photoreceptors, J. Cell Sci., 133
Satoh, 2013, GPI biosynthesis is essential for rhodopsin sorting at the trans-Golgi network in Drosophila photoreceptors, Development, 140, 385, 10.1242/dev.083683
Gloor, 1990, The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na,K-ATPase, J. Cell Biol., 110, 165, 10.1083/jcb.110.1.165
Cereijido, 2012, The Na+-K+-ATPase as self-adhesion molecule and hormone receptor, Am. J. Physiol. Cell Physiol., 302, C473, 10.1152/ajpcell.00083.2011
Shoshani, 2004, The polarized expression of Na+,K+-ATPase in epithelia depends on the association between β-subunits located in neighboring cells, Mol. Biol. Cell, 16, 1071, 10.1091/mbc.e04-03-0267
Cereijido, 2008, Tight junction and polarity interaction in the transporting epithelial phenotype, Biochim. Biophys. Acta (BBA) - Biomembr., 1778, 770, 10.1016/j.bbamem.2007.09.001
McNeill, 1990, Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity, Cell, 62, 309, 10.1016/0092-8674(90)90368-O
Padilla-Benavides, 2010, The polarized distribution of Na+,K+-ATPase: role of the interaction between {beta} subunits, Mol. Biol. Cell, 21, 2217, 10.1091/mbc.e10-01-0081
Wilson, 2000, Apical plasma membrane mispolarization of NaK-ATPase in polycystic kidney disease epithelia is associated with aberrant expression of the beta2 isoform, Am. J. Pathol., 156, 253, 10.1016/S0002-9440(10)64726-8
Vagin, 2005, Recombinant addition of N-glycosylation sites to the basolateral Na,K-ATPase beta1 subunit results in its clustering in caveolae and apical sorting in HGT-1 cells, J. Biol. Chem., 280, 43159, 10.1074/jbc.M508262200
Lobato-Alvarez, 2016, The apical localization of Na(+), K(+)-ATPase in cultured human retinal pigment epithelial cells depends on expression of the beta2 subunit, Front. Physiol., 7, 450, 10.3389/fphys.2016.00450
Palmgren, 2011, P-type ATPases, Annu. Rev. Biophys., 40, 243, 10.1146/annurev.biophys.093008.131331
Huang, 2020, Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1865
Cereijido, 2004, Cell adhesion, polarity, and epithelia in the dawn of metazoans, Physiol. Rev., 84, 1229, 10.1152/physrev.00001.2004
Nejsum, 2007, A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity, J. Cell Biol., 178, 323, 10.1083/jcb.200705094
Kim, 2010, Reduced aquaporin3 expression and survival of keratinocytes in the depigmented epidermis of vitiligo, J. Invest. Dermatol., 130, 2231, 10.1038/jid.2010.99
Login, 2019, Aquaporins differentially regulate cell-cell adhesion in MDCK cells, FASEB J., 33, 6980, 10.1096/fj.201802068RR
Tokhtaeva, 2011, Epithelial junctions depend on intercellular trans-interactions between the Na,K-ATPase β₁ subunits, J. Biol. Chem., 286, 25801, 10.1074/jbc.M111.252247
Kizhatil, 2007, Ankyrin-G is a molecular partner of e-cadherin in epithelial cells and early embryos *, J. Biol. Chem., 282, 26552, 10.1074/jbc.M703158200
Vasquez, 2021, Physical basis for the determination of lumen shape in a simple epithelium, Nat. Commun., 12, 5608, 10.1038/s41467-021-25050-3
Saint-Criq, 2017, Role of CFTR in epithelial physiology, Cell. Mol. Life Sci., 74, 93, 10.1007/s00018-016-2391-y
Castellani, 2017, Cystic fibrosis: a clinical view, Cell. Mol. Life Sci., 74, 129, 10.1007/s00018-016-2393-9
Sarmah, 2005, Inositol polyphosphates regulate zebrafish left-right asymmetry, Dev. Cell, 9, 133, 10.1016/j.devcel.2005.05.002
Essner, 2005, Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut, Development, 132, 1247, 10.1242/dev.01663
Navis, 2013, Cftr controls lumen expansion and function of Kupffer’s vesicle in zebrafish, Development, 140, 1703, 10.1242/dev.091819
Rathbun, 2020, Cytokinetic bridge triggers de novo lumen formation in vivo, Nat. Commun., 11, 1269, 10.1038/s41467-020-15002-8
Swiatecka-Urban, 2002, PDZ domain interaction controls the endocytic recycling of the cystic fibrosis transmembrane conductance regulator*, J. Biol. Chem., 277, 40099, 10.1074/jbc.M206964200
Bidaud-Meynard, 2019, Transcytosis maintains CFTR apical polarity in the face of constitutive and mutation-induced basolateral missorting, J. Cell Sci., 132
Singh, 2009, Differential roles of NHERF1, NHERF2, and PDZK1 in regulating CFTR-mediated intestinal anion secretion in mice, J. Clin. Investig., 119, 540, 10.1172/JCI35541
Moyer, 1999, domain in CFTR is an apical membrane polarization signal, J. Clin. Investig., 104, 1353, 10.1172/JCI7453
Wang, 2000, Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity, Cell, 103, 169, 10.1016/S0092-8674(00)00096-9
Holleran, 2013, Regulated recycling of mutant CFTR is partially restored by pharmacological treatment, J. Cell Sci., 126, 2692
Bradbury, 1992, Regulation of plasma membrane recycling by CFTR, Science, 256, 530, 10.1126/science.1373908
Berger, 1991, Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel, J. Clin. Investig., 88, 1422, 10.1172/JCI115450
Bagnat, 2010, Cse1l is a negative regulator of CFTR-dependent fluid secretion, Curr. Biol., 20, 1840, 10.1016/j.cub.2010.09.012
Jakab, 2013, Characterization of CFTR high expresser cells in the intestine, Am. J. Physiol. Gastrointest. Liver Physiol., 305, G453, 10.1152/ajpgi.00094.2013
Montoro, 2018, A revised airway epithelial hierarchy includes CFTR-expressing ionocytes, Nature, 560, 319, 10.1038/s41586-018-0393-7
Plasschaert, 2018, A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte, Nature, 560, 377, 10.1038/s41586-018-0394-6
Inokuchi, 2017, Functional classification of gill ionocytes and spatiotemporal changes in their distribution after transfer from seawater to freshwater in Japanese seabass, J. Exp. Biol., 220, 4720
Hsu, 2014, A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes), Cell Tissue Res., 357, 225, 10.1007/s00441-014-1883-z
Kim, 2020, Drosophila as a model for studying cystic fibrosis pathophysiology of the gastrointestinal system, Proc. Natl. Acad. Sci. USA, 117, 10357, 10.1073/pnas.1913127117
Hayashi, 2018, Development and function of the Drosophila tracheal system, Genetics, 209, 367, 10.1534/genetics.117.300167
Behr, 2003, The claudin-like megatrachea is essential in septate junctions for the epithelial barrier function in Drosophila, Dev. Cell, 5, 611, 10.1016/S1534-5807(03)00275-2
Wu, 2004, Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control, J. Cell Biol., 164, 313, 10.1083/jcb.200309134
Genova, 2003, Neuroglian, gliotactin, and the Na+/K+ ATPase are essential for septate junction function in Drosophila, J. Cell Biol., 161, 979, 10.1083/jcb.200212054
Paul, 2007, A pump-independent function of the Na,K-ATPase is required for epithelial junction function and tracheal tube-size control, Development, 134, 147, 10.1242/dev.02710
Wang, 2006, Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea, Curr. Biol., 16, 180, 10.1016/j.cub.2005.11.074
Moussian, 2005, Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster, J. Morphol., 264, 117, 10.1002/jmor.10324
Araújo, 2005, mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development—analysis of its role in Drosophila tracheal morphogenesis, Dev. Biol., 288, 179, 10.1016/j.ydbio.2005.09.031
Luschnig, 2006, serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila, Curr. Biol., 16, 186, 10.1016/j.cub.2005.11.072
Tsarouhas, 2007, Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila, Dev. Cell, 13, 214, 10.1016/j.devcel.2007.06.008
Forster, 2010, Sec24-dependent secretion drives cell-autonomous expansion of tracheal tubes in Drosophila, Curr. Biol., 20, 62, 10.1016/j.cub.2009.11.062
Luschnig, 2014, Luminal matrices: an inside view on organ morphogenesis, Exp. Cell Res., 321, 64, 10.1016/j.yexcr.2013.09.010
Öztürk-Çolak, 2016, A feedback mechanism converts individual cell features into a supracellular ECM structure in Drosophila trachea, eLife, 5, 10.7554/eLife.09373
Dong, 2014, Balance between apical membrane growth and luminal matrix resistance determines epithelial tubule shape, Cell Rep., 7, 941, 10.1016/j.celrep.2014.03.066
Husain, 2006, The agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the Drosophila retina, Dev. Cell, 11, 483, 10.1016/j.devcel.2006.08.012
Abrams, 2006, Fork head and Sage maintain a uniform and patent salivary gland lumen through regulation of two downstream target genes, PH4alphaSG1 and PH4alphaSG2, Development, 133, 3517, 10.1242/dev.02525
Syed, 2012, A luminal glycoprotein drives dose-dependent diameter expansion of the Drosophila melanogaster hindgut tube, PLoS Genet., 8, 10.1371/journal.pgen.1002850
Durdu, 2014, Luminal signalling links cell communication to tissue architecture during organogenesis, Nature, 515, 120, 10.1038/nature13852
Gill, 2016, Integrity of narrow epithelial tubes in the C. elegans excretory system requires a transient luminal matrix, PLoS Genet., 12, 10.1371/journal.pgen.1006205
Cohen, 2020, A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in Caenorhabditis elegans, Elife, 9, 10.7554/eLife.57874
Strilic, 2010, Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels, Curr. Biol., 20, 2003, 10.1016/j.cub.2010.09.061
Yang, 2016, Role of CD34 family members in lumen formation in the developing kidney, Dev. Biol., 418, 66, 10.1016/j.ydbio.2016.08.009
Román-Fernández, 2018, The phospholipid PI(3,4)P(2) is an apical identity determinant, Nat. Commun., 9, 5041, 10.1038/s41467-018-07464-8
Overeem, 2015, Mechanisms of apical-basal axis orientation and epithelial lumen positioning, Trends Cell Biol., 25, 476, 10.1016/j.tcb.2015.04.002
Jewett, 2018, Insane in the apical membrane: trafficking events mediating apicobasal epithelial polarity during tube morphogenesis, Traffic, 10.1111/tra.12579
Sato, 2014, Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis, J. Cell Sci., 127, 422
Sato, 2007, The Rab8 GTPase regulates apical protein localization in intestinal cells, Nature, 448, 366, 10.1038/nature05929
Sobajima, 2015, Rab11a is required for apical protein localisation in the intestine, Biol. Open, 4, 86, 10.1242/bio.20148532
Knowles, 2015, Rab11a regulates syntaxin 3 localization and microvillus assembly in enterocytes, J. Cell Sci., 128, 1617
Weis, 2015, Loss of MYO5B in mice recapitulates microvillus inclusion disease and reveals an apical trafficking pathway distinct to neonatal duodenum, Cell. Mol. Gastroenterol. Hepatol., 2, 131, 10.1016/j.jcmgh.2015.11.009
Levic, 2020, Distinct roles for luminal acidification in apical protein sorting and trafficking in zebrafish, J. Cell Biol., 219, 10.1083/jcb.201908225
Zhang, 2012, Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis, Development, 139, 2071, 10.1242/dev.077347
Shafaq-Zadah, 2012, AP-1 is required for the maintenance of apico-basal polarity in the C. elegans intestine, Development, 139, 2061, 10.1242/dev.076711
Delacour, 2008, Loss of galectin-3 impairs membrane polarisation of mouse enterocytes in vivo, J. Cell Sci., 121, 458, 10.1242/jcs.020800
Javitt, 2020, Assembly mechanism of mucin and von willebrand factor polymers, Cell, 183, 717, 10.1016/j.cell.2020.09.021
Chen, 2018, An alternative mode of epithelial polarity in the Drosophila midgut, PLoS Biol., 16, 10.1371/journal.pbio.3000041
Ryan, 2013, Rapid identification of kidney cyst mutations by whole exome sequencing in zebrafish, Development, 140, 4445, 10.1242/dev.101170
Mittal, 2019, Versican is crucial for the initiation of cardiovascular lumen development in medaka (Oryzias latipes), Sci. Rep., 9, 9475, 10.1038/s41598-019-45851-3
Levic, 2021, Knock-in tagging in zebrafish facilitated by insertion into non-coding regions, Development, 148, 10.1242/dev.199994
Seleit, 2021, Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach, bioRxiv
