Polarization-insensitive and wide-angle MXene-TiN-based wideband absorber operating in the visible and near-infrared regime
Tóm tắt
This study proposes a simple design of a wideband metamaterial absorber (MMA) that functions in the visible and near-infrared range. The proposed absorber is composed of a multilayer structure with two-dimensional (2D) Ti3C2Tx (MXene) layer and top mounted structure of titanium nitride (TiN). It is observed that the proposed absorber absorbs above 85% of incident light in the visible and near-infrared regime, ranging from 400 to 1600 nm for the normal incidence of light. The results show that this significant absorption was produced by 2D nanostructure MXene and top-mounted TiN disk structure due to a wide range of localized surface plasmonic resonance (LSPR). It is noticed that the proposed absorber exhibits polarization-insensitivity and shows a similar absorption for transverse electric (TE) mode and transverse magnetic (TM) mode. Further, the LSPR is less sensitive to the obliquity incidence of the light, and demonstrates wide-range angular stability. High tunability and effective heat-light energy conversion are two benefits of employing MXene and high-performance plasmonic properties of TiN in creating the proposed wideband absorber; these characteristics make them ideal for various applications, including solar energy systems and filters.
Tài liệu tham khảo
Cao, T., Wei, W.C., Simpson, R.E., Zhang, L., Cryan, M.J., Han, S., Lee, B.J.: Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci. Rep. 4, 3955 (2014)
Chaudhuri, K., Alhabeb, K.M., Wang, M., Shalaev, Z., Gogotsi, V.M., Boltasseva, Y.: Highly Broadband Absorber using Plasmonic Titanium Carbide (MXene). ACS Photonics. 5, 1115–1122 (2018)
Chen, H.T.: “Interference Theory of Metamaterial perfect absorbers,:Opt. Express, vol. 20, pp. 7165–7172, (2012)
Chen, K., Dao, T.D., Ishii, S., Aono, M., Nagao, T.: Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy. Adv. Funct. Mater. 25, 6637–6643 (2016)
Cheng, Y.Z., Fan, J.P., Luo, H., Chen, F.: “Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial,” IEEE Access,vol. 8, pp.7615–7621, (2020)
Cui, W., Li, L., Xue, W., Xu, H., He, Z., Liu, Z.: Enhanced absorpion for MXene/Au-based meramaterials. Results Phys. 23, 04072 (2021)
Ding, F., Dai, J., Chen, Y., Zhu, J., Jin, Y., Bozhevolnyi, S.I.: Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci. Rep. 6, 39445 (2016)
Geldmeier, J., König, T., Mahmoud, M.A., Sayed, E., M.A. and, Tsukruk, V.V.: M“Tailoring the plasmonic modes of a grating-nanocube assembly to achieve broadband absorption in the visible spectrum. Adv. Funct. Mater. ’ Vol. 24, 6797–6805 (2014)
Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the Diffraction Limit. Nat. Phot. 4, 83–91 (2010)
Hägglund, C., Zeltzer, G., Ruiz, R., Thomann, I., Lee, H.B.: “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible Light absorption,” NanoLett., vol. 13, pp. 3352–3357, (2014)
Haixia, X., Lizhong, H., Yanxin, L., Jun, X., Yihang, C.: Dual-Band Metamaterial Absorbers in the visible and Near-Infrared Regions. J. Phys. Chem. C. 123, 10028– (2019)
Han, S., Lee, B.J.: Electromagnetic resonance modes on a twodimensional tandem grating and its application for broadband absorption in the visible spectrum. Opt. Express. 24, A202 (2016)
Jia, Y., Wu, T., Wang, G., Jiang, J., Miao, F., Gao, Y.: “Visible and Near-Infrared Broadband Absorber Based on Ti3C2Tx MXene-Wu,” Nanomaterials, vol. 12, (2022)
Jiang, X., Liu, S., Liang, W., Luo, S., He, Z., Ge, Y., Wang, H., Cao, R., Zhang, F., Wen, Q., Li, J., Bao, Q., Fan, D., Zhang, H., Jiang, X., Liang, W., Luo, S., He, Z., Ge, Y., Wang, H., Zhang, F., Fan, D., Zhang, H.: Broadband Nonlinear Photonics in few Layer MXene Ti3C2Tx (T = F, o, or OH). Laser Photon. Rev. 1, 1700229 (2017)
Lee, D., Hwang, J.G., Lim, D., Hara, T., Lim, S.: Incident angle- and polarization-insensitive metamaterial absorber using circular sectors. Sci. Rep. 6, 27155 (2016)
Li, Z., Butun, S., Aydin, K.: Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano. 8, 8242–8248 (2014)
Li, Z., Butun, S., Aydin, K.: ” Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics, vol. 2, pp. 183–188, (2015)
Liu, Z., Liu, G., Liu, X., Huang, S., Wang, Y., Pan, P., Liu, M.: Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology. 26, 235702 (2015)
Liu, X., Lan, C., Bi, K., Li, B., Zhao, Q., Zhou, J.: Dual band metamaterial perfect absorber based on mie resonances. Appl. Phys. Lett. 109, 062902 (2016)
Maier, S.A.: “Plasmonics: fundamentals and applications,” Springer US: Boston, MA, 41 (2007)
Mauchamp, V., Bugnet, M., Bellido, E.P., Botton, G.A., Moreau, P., Magne, D., Naguib, M., Cabioc, H.T., Barsoum, M.W.: Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: electronic structure versus boundary effects. Phys. Rev. 89, 235428 (2014)
Moreau, A., Ciraci, C., Mock, J.J., Hill, R.T., Wang, Q., Wiley, B.J., Chilkoti, A., Smith, D.R.: Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature. 492, 86–89 (2012)
Naguib, M.: Chap. 4: “Two-dimensional transition metal carbides and carbonitrides,” in nanomaterials handbook; Gogotsi, Y., Ed.; Taylor & Francis, CRC Press: Boca Raton, pp. 83–102, (2017)
Nishijima, Y., Balcytis, A., Naganuma, S., Seniutinas, G., Juodkazis, S.: Tailoring metal and insulator contributions in plasmonic perfect absorber metasurfaces. ACS Appl. Nano Mater. 1, 3557–3564 (2018)
Pan, M.Y., Huang, Y., Li, Q., Luo, H., Zhu, H.Z., Kaur, S.: Qiu “Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures Nanomater. Energy. 69, 104449 (2020)
Patel, S.K., Parmar, J., Katrodiya, D., Nguyen, T.K., Holdengreber, E., Dhasarathan, V.: “Broadband metamaterial-based near-infrared absorber using an array of uniformly placed gold resonators,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 37, no. 7, pp. 2163–2170, Jul. (2020)
Pflüger, J., Fink, J., Weber, W., Bohnen, K.P., Crecelius, G.: Dielectric properties of TiCx, TiNx, VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy, Phys. Rev. B, vol. 30, pp.1155–1163, (1984)
Rhee, J.Y., Kim, Y.J., Yi, C., Hwang, J.S., Lee, Y.P.: “Recent progress in perfect absorbers by utilizing metamaterials,” J. Electromagn. Waves Appl., vol. 34, no. 10, pp. 1338–1371, Jul. (2020)
Roberts, A.S., Pors, A., Albrektsen, O., Bozhevolnyi, S.I.: Subwavelength plasmonic color printing protected for ambient use. Nano Lett. 14, 783–787 (2014)
Rufangura, P., Sabah, C.: Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications. J. Alloys Compd. ’ Vol. 671, 43–50 (2016)
Satheeshkumar, E., Makaryan, T., Melikyan, A., Minassian, H., Gogotsi, Y., Yoshimura, M.: One-step solution processing of ag, au and Pd@MXene hybrids for SERS. Sci. Rep. 6(1), 32049 (2016)
Sun, T., Guo, C.F., Cao, F., Akinoglu, E.M., Wang, Y., Giersig, M., Ren, Z., Kempa, K.: A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes. Appl. Phys. Lett. 104, 251119–251119 (2014)
Tablero, C.: Microscopic analysis and applications of the Cu(Sb,Bi)S2 high optical absorption. J. Phys. Chem. 119, 8857–8886 (2015)
Tuan, T.S., Nguyen, H.: Numerical Study of an efficient Broadband Metamaterial Absorber in visible light region. IEEE Photon. J. 11, 1–8 (2019)
Wang, B., Huang, W., Wang, L.: “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” Rsc. Adv. vol. 7,pp. 42956–42963, 2017a. (2017a)
Wang, B.X., Wang, G.Z., Huang, W.Q.: “Single metamaterial resonator having five-band terahertz near-perfect absorption,” IEEE Photonic Tech. L., vol. 29, pp. 1888–1891, (2017b)
Wu, C., Iii, B.N., Shvets, G., John, J., Milder, A., Zollars, B., Savoy, S.: Large-area, wide-angle, spectrally selective plasmonic absorber;. Phys. Rev. B Condens. Matter. 84, 173–177 (2011)
Yao, G., Ling, F., Yue, J., Luo, C., Ji, J., Yao, J.: “Dual-band tunable perfect metamaterial absorber in the thz range,” Opt. Express, vol. 24, pp. 1518–1527, (2016)
Zhang, M., Fang, J., Zhang, F., Chen, J., Yu, H.: Ultra-narrow band perfect absorbers based on fano resonance in MIM metamaterials. OptCommun. 405, 216–221 (2017)
Zhang, Y., Yi, Z., Wang, X., Chu, P., Yao, W., Zhou, Z., Cheng, S., et al.: “Dual band visible metamaterial absorbers based on four identical ring patches.” Physica E: Low-dimensional Systems and Nanostructures vol. 127, pp.114526, (2021)
Ziolkowski, R.W., Engheta, N.: “Metamaterials: Two decades past and into their electromagnetics future and beyond,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1232–1237, Mar. (2020)