Polar decompositions and related classes of operators in spaces ∏ κ

Springer Science and Business Media LLC - Tập 44 - Trang 50-70 - 2002
Cornelis V. M. van der Mee1, André C. M. Ran2, Leiba Rodman3
1Dipartimento di Matematica, Università di Cagliari, Cagliari, Italy
2Divisie Wiskunde en Informatica Faculteit Exacte Wetenschappen, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
3Department of Mathematics, College of William and Mary, Williamsburg, USA

Tóm tắt

Polar decompositions with respect to an indefinite inner product are studied for bounded linear operators acting on a ∏ κ space. Criteria are given for existence of various forms of the polar decompositions, under the conditions that the range of a given operatorX is closed and that zero is not an irregular critical point of the selfadjoint operatorX [*]X. Both real and complex spaces ∏ κ are considered. Relevant classes of operators having a selfadjoint (in the sense of the indefinite inner product) square root, or a selfadjoint logarithm, are characterized.

Tài liệu tham khảo

[Bo] J. Bognár.Indefinite Inner Product Spaces, Springer, Berlin, 1974. [BMR31] Y. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, L. Rodman. Polar decompositions in finite dimensional indefinite scalar product spaces: General theory,Linear Algebra Appl. 261 (1997), 91–141. [BMR32] Y. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, L. Rodman. Polar decompositions in finite dimensional indefinite scalar product spaces: Special cases and applications,Operator Theory: Advances and Applications,87, (I. Gohberg, P. Lancaster, P. N. Shivakumar, eds.), Birkhäuser, Basel, 1996, pp. 61–94, Errata,Integral Equations and Operator Theory 27 (1997), 497–501. [BMR33] Y. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, L. Rodman. Extension of isometries and polar decompositions,SIAM J. Matrix Anal. Appl. 18 (1997), 752–774. [BR] Y. Bolshakov, B. Reichstein. Unitary equivalence in an indefinite scalar product: An analogue of singular value decomposition,Linear Algebra Appl. 222 (1995), 155–226. [Gi1] Ju. P. Ginzburg. OnJ-nonexpansive operator functions,Dokl. Akad. Nauk SSSR 117(2) (1957), 171–173 [Russian]. [Gi2] Ju. P. Ginzburg, OnJ-nonexpansive operators in a Hilbert space,Nauchnye Zap. Fak. Fiziki i Matematiki Odesskogo Gosud. Pedagog. Inst. 22 (1958), 13–20 [Russian]. [Go] I. C. Gohberg, On linear operators depending analytically on a parameter,Dokl. Akad. Nauk SSSR 78 (1951), 629–632 [Russian]. [GoKr] I. C. Gohberg, M. G. Krein.Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. of Mathematical Monographs, Vol. 18, Amer. Math. Soc., Providence, R.I., 1969. [IK] I. S. Iohvidov, M. G. Krein.Spectral Theory of Operators in Spaces with an indefinite metric, Trudy Mosk. Mat. Ob-va8, 413–496 (1959) [Russian]; English Translation:AMS Translations, Series2, 34 (1963), 283–373. [IKL] I. S. Iohvidov, M. G. Krein, H. Langer.Introduction to Spectral Theory of Operators in Spaces with an Indefinite Metric, Akademie Verlag, Berlin, 1981. [KS1] M. G. Krein, Ju. L. Shmul'jan. On plus operators in a space with an indefinite metric,Mat. Issled. 1, No.2 (1966), 131–161 [Russian]; English Translation:AMS Translations, Series2, 85 (1969), 93–113. [KS2] M. G. Krein, Ju. L. Shmul'jan.J-polar representation of plus operators.Mat. Issled. 1, No. 2 (1966), 172–210 [Russian]; English Translation:AMS Translations, Series2, 85 (1969), 115–143. [Lan] H. Langer, Spectral functions of definitizable operators in Krein spaces,Lecture Notes in Mathematics, volume 948, 1–46. Springer Verlag, 1982. [LMMR] B. Lins, P. Meade, C. Mehl, L. Rodman. Normal matrices and polar decompositions in indefinite inner products,Linear and Multilinear Algebra 49 (2001), 45–89. [MRR1] C. V. M. van der Mee, A. C. M. Ran, L. Rodman. Stability of polar decompositions,Glasnik Matematicki, 35 (2000), 137–148. [MRR2] C. V. M. van der Mee, A. C. M. Ran, L. Rodman. Stability of self-adjoint square roots and polar decompositions in indefinite scalar product spaces.Linear Algebra Appl. 302/303 (1999), 77–104. [MRR3] C. V. M. van der Mee, A. C. M. Ran, L. Rodman. Real Hamiltonian polar decompositions,SIAM J. Matrix Anal. Appl. 22 (2001), 1263–1273. [P1] V. P. Potapov. Multiplicative structure ofJ-nonexpansive matrix functions.Trudy Mosk. Math. Ob. 4 (1955), 125–236 [Russian]; English Translation:AMS Translations, Series2, 15 (1960), 131–243. [P2] V. P. Potapov. A theorem on the modulus, I. Main concepts. The modulus.Theory of Functions, Functional Analysis and its Applications 38 (1982), 91–101, 129, Kharkov [Russian]; English Translation:AMS Translations, Series2, 138 (1988), 55–65.