Poisson loglinear modeling with linear constraints on the expected cell frequencies

Nirian Martín1, Leonardo Pardo2
1Dep. Statistics, Carlos III University of Madrid, Madrid, Spain
2Dep. Statistics and O.R., Complutense University of Madrid, Madrid, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agresti, A. (2002). Categorical data analysis, 2nd ed. Wiley, New York.

Agresti, A. (2007). An introduction to categorical data analysis, 2nd ed. Wiley, New York.

Aitchison, J. and Silvey, S.D. (1958). Maximum likelihood estimation of parameters subject to constraints. Annals of Mathematical Statistics, 29, 813–828.

Caussinus, H. (1966). Contribution à l’analyse statistique des tableaux de correlation. Ann. Fac. Sci. Toulouse, 29, 77–182.

Chatterjee, S. and Hadi, A.S. (2006). Regression analysis by example, 4th ed. John Wiley & Sons, Hoboken, New Jersey.

Cressie, N. and Pardo, L. (2000). Minimum ϕ-divergence estimator and hierarchical testing in loglinear models. Statist. Sinica, 10, 867–884.

Cressie, N. and Pardo, L. (2002). Model checking in loglinear models using ϕ-divergences and MLEs. J. Statist. Plann. Inference, 103, 437–453.

Cressie, N. and Read, T.R.C. (1984). Multinomial goodness-of-fit tests. J. R. Stat. Soc. Ser. B Stat. Methodol., 46, 440–464.

Christensen, R. (1997). Log-linear model and logistic regression, 2nd ed. Springer-Verlag, New York.

Dale, J.R. (1986). Asymptotic normality of goodness-of-fit statistics for sparse product multinomials. J. R. Stat. Soc. Ser. B Stat. Methodol., 41, 48–59.

Ferguson, T.S. (1996). A course in large sample theory. Chapman & Hall, London.

Gail, M. (1978). The analysis of heterogeneity for indirect standardized mortality ratios. J. Roy. Statist. Soc. Ser. A, 141, 224–234.

Haber, M. and Brown, M.B. (1986). Maximum likelihood methods for log-linear models when expected frequencies are subject to linear constraints. J. Amer. Statist. Assoc., 81, 477–482.

Haberman, S.J. (1973). Log-linear models for frequency data: sufficient statistics and likelihood equations. Ann. Statist., 1, 617–632.

Haberman, S.J. (1974). The analysis of frequency data. University of Chicago Press, Chicago.

Kateri, M. and Agresti, A. (2007). A class of ordinal quasi-symmetry models for square contingency tables. Statist. Probab. Lett., 77, 598–603.

Lang, J.B. (1996a). Maximum likelihood methods for a generalized class of log-linear models. Ann. Statist., 24, 726–752.

Lang, J.B. (1996b). On the comparison of multinomial and Poisson log-linear models. J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 253–266.

Lang, J.b. (2004). Multinomial–Poisson homogeneous models for contingency tables. Ann. Statist., 32, 340–383.

Martín, N. and Pardo, L. (2008a). Minimum phi-divergence estimators for loglinear models with linear constraints and multinomial sampling. Statist. Papers, 49, 15–36.

Martín, N. and Pardo, L. (2008b). New families of estimators and test statistics in loglinear models. J. Multivariate Anal., 99, 1590–1609.

Martín, N. and Li, Y. (2011). A new class of minimum power divergence estimators with applications to cancer surveillance. J. Multivariate Anal., 102, 1175–1193.

Pardo, L. (2006). Statistical inference based on divergence measures. Chapman & Hall/CRC, Boca de Raton.

Pardo, J.A., Pardo, L. and Zografos, K. (2002). Minimum ϕ-divergence estimators with constraints in multinomial populations. J. Statist. Plann. Inference, 104, 221–237.

Pardo, L. and Martín, N. (2009). Homogeneity/heterogeneity hypotheses for standardized mortality ratios based on minimum power-divergence estimators. Biom. J., 51, 819–836.

Rao, C.R. (1973). Linear statistical inference and its applications, 2nd ed. John Wiley & Sons, New York.

Rao, C.R. and Toutenburg, H. (1999). Linear models: least squares and alternatives, 2nd ed. Springer, New York.

Rivas, M.J., Santos, M.T. and Morales, D. (1995). Rényi test statistics for partially observed diffusion processes. J. Statist. Plann. Inference, 127, 91–102.

Searle, S.R. (1971). Linear models. John Wiley & Sons, New York.

Zelterman, D. (1999). Models for discrete data. Oxford University Press, New York.