Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ràng buộc tại điểm trong các không gian Sobolev giá trị vector
Tóm tắt
Chúng tôi xem xét một tập hợp $$\mathcal {C}$$ với các ràng buộc tại điểm trong một không gian Sobolev giá trị vector. Chúng tôi đặc trưng hóa nón tiếp tuyến và nón pháp tuyến của nó. Dưới giả định bổ sung rằng các ràng buộc tại điểm là tuyến tính và thỏa mãn điều kiện độc lập tuyến tính, chúng tôi chỉ ra rằng tập hợp $$\mathcal {C}$$ là polyhedric. Các kết quả này được áp dụng cho điều khiển tối ưu một dây trong một ống polyhedral.
Từ khóa
#Các ràng buộc tại điểm #không gian Sobolev #điều khiển tối ưu #polyhedricTài liệu tham khảo
Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV spaces. In: MPS/SIAM Series on Optimization, vol. 6, p. xii+634. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006). ISBN: 0-89871-600-4
Bonnans, J.F.: Second-order analysis for control constrained optimal control problems of semilinear elliptic systems. Appl. Math. Optim. Int. J. Appl. Stoch. 38(3), 303–325 (1998). doi:10.1007/s002459900093. ISSN: 0095-4616
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)
Brézis, H., Browder, F.: A property of Sobolev spaces. Commun. Partial Differ. Equ. 4(9), 1077–1083 (1979). doi:10.1080/03605307908820120. ISSN: 0360-5302
Clarkson, K.L.: A probabilistic algorithm for the post office problem. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing. STOC ’85. ACM, Providence, pp. 175–184. (1985). doi:10.1145/22145.22165
Clarkson, K.L.: New applications of random sampling in computational geometry. Discret. Comput. Geom. Int. J. Math. Comput. Sci. 2(2), 195–222 (1987). doi:10.1007/BF02187879. ISSN: 0179-5376
Dal Maso, G., Musina, R.: An approach to the thin obstacle problem for variational functionals depending on vector valued functions. Commun. Partial Differ. Equ. 14(12), 1717–1743 (1989). doi:10.1080/03605308908820673. ISSN: 0360-5302
Delfour, M., Zolésio, J.-P.: Shapes and Geometries. Analysis, Differential Calculus, and Optimization. SIAM, Philadelphia (2001)
Diestel, J., Uhl, J.: Vector Measures. Mathematical Surveys and Monographs. American Mathematical Society, Providence (1977)
Frémiot, G., Horn, W., Laurain, A., Rao, M., Sokołowski, J.: On the analysis of boundary value problems in nonsmooth domains. Dissertationes Mathematicae (Rozprawy Matematyczne) 462, 462 (2009). doi:10.4064/dm462-0-1. ISSN: 0012-3862
Fukushima, M., Ōshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes. In: de Gruyter Studies in Mathematics. vol. 19, p. x+392. Walter de Gruyter & Co., Berlin (1994). doi:10.1515/9783110889741. ISBN: 3-11-011626-X
Grünbaum, B.: Convex polytopes. With the cooperation of Victor Klee. In: Perles, M.A., Shephard, G.C. (eds.) Pure and Applied Mathematics, vol. 16, p. xiv+456. Interscience Publishers, Wiley, Interscience Publishers John Wiley & Sons, Inc. (1967)
Grun-Rehomme, M.: Caractérisation du sous-différentiel d’intégrandes convexes dans les espaces de Sobolev. J. Math. Pures Appl. Neuv. Sér. 56(2), 149–156 (1977). ISSN: 0021-7824
Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japn. 29(4), 615–631 (1977). ISSN: 0025-5645
Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. In: Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993). ISBN 0-19-853669-0
Hildebrandt, S., Widman, K.O.: Variational inequalities for vector-valued functions. J. für die Reine Angew. Math. 309, 191–220 (1979). ISSN: 0075-4102
Hintermüller, M., Surowiec, T.: First-order optimality conditions for elliptic mathematical programs with equilibrium constraints via variational analysis. SIAM J. Optim. 21(4), 1561–1593 (2011). doi:10.1137/100802396. ISSN: 1052-6234
Kilpeläinen, T., Malý, J.: Supersolutions to degenerate elliptic equation on quasi open sets. Communications in Partial Differential Equations 17(3–4), 371–405 (1992). doi:10.1080/03605309208820847. ISSN: 0360-5302
Krejčí, P.: Evolution variational inequalities and multidimensional hysteresis operators. In: Non-linear Differential Equations (Chvalatice, 1998). Chapman & Hall/CRC Research Notes in Mathematics, vol. 404, Chapman & Hall/CRC, Boca Raton, pp. 47–110 (1999)
Mancini, G., Musina, R.: Surfaces of minimal area enclosing a given body in R\(^{3}\). Ann. della Scuola Normale Super Pisa. Cl. Sci. Ser. IV 16(3), 331–354 (1989). ISSN: 0391-173X
Marcus, M., Mizel, V.J.: Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Ration. Mech. Anal. 45, 294–320 (1972). doi:10.1007/BF00251378. ISSN: 0003-9527
Marcus, M., Mizel, V.J.: Nemitsky operators on Sobolev spaces. Arch. Ration. Mech. Anal. 51, 347–370 (1973). doi:10.1007/BF00263040
Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Function. Anal. 22(2), 130–185 (1976)
Rao, M., Sokołowski, J.: Polyhedricity of convex sets in Sobolev space \(H_{0}^{2} (\Omega )\). Nagoya Math. J. 130, 101–110 (1993). ISSN: 0027-7630
Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987)
Schneider, R.: Convex bodies: the Brunn-Minkowski theory. In: Encyclopedia of Mathematics and its Applications. vol. 151, pp. xxii+736. Cambridge University Press, Cambridge. (2014) ISBN: 978-1-107-60101-7
Sokołowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. Springer, New York (1992)
Sokołowski, J., Zolésio, J.-P.: Shape sensitivity analysis of unilateral problems. SIAM J. Math. Anal. 18(5), 1416–1437 (1987). doi:10.1137/0518103. ISSN: 0036-1410
Wachsmuth, G.: Strong stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Optim. 24(4), 1914–1932 (2014). doi:10.1137/130925827
Wachsmuth, G.: Mathematical Programs with Complementarity Constraints in Banach Spaces. J. Optim. Theory Appl. 166(2), 480–507 (2015). doi:10.1007/s10957-014-0695-3. ISSN: 0022-3239