Points algébriques de petits degrés sur la courbe d’équation affine $$y^{2}=x^{5}+1$$

Afrika Matematika - Tập 29 - Trang 1151-1157 - 2018
Moussa Fall1, Oumar Sall1
1Laboratoire de Mathématiques et Applications (L.M.A.), U.F.R. des Sciences et Technologies, Université Assane SECK de Ziguinchor, Ziguinchor, Senegal

Tóm tắt

We give a parameterization of the algebraic points of degree $$\le 3$$ over $$\mathbb {Q}$$ on the curve $$ y^{2}=x^{5}+1. $$ This result extends a previous result of Schaefer who described in Schaefer (Math Ann 310:447–471, 1998) the set of algebraic points of degree $$\le 2 $$ over $$\mathbb {Q}$$ .

Tài liệu tham khảo

Schaefer, E.F.: Computing a Selmer group of a Jacobian using functions on the curve. Math. Ann. 310, 447–471 (1998) Griffiths, P. A.: Introduction to algebraic curves. In: Translations of mathematical monographs, vol. 76. American Mathematical Society, Providence, RI (1989)