Point and prediction interval estimation for electricity markets with machine learning techniques and wavelet transforms
Tài liệu tham khảo
Zareipour, 2006, Application of public-domain market information to forecast Ontario's wholesale electricity prices, IEEE Trans. Power Syst., 21, 1707, 10.1109/TPWRS.2006.883688
Zhou, 2006, Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach, IEE Proc. Gen. Transm. Distrib., 153, 187, 10.1049/ip-gtd:20045131
Garcia-Martos, 2007, Mixed models for short-run forecasting of electricity prices, IEEE Trans. Power Syst., 22, 544, 10.1109/TPWRS.2007.894857
Garcia, 2005, A GARCH forecasting model to predict day-ahead electricity prices, IEEE Trans. Power Syst., 20, 867, 10.1109/TPWRS.2005.846044
Amjady, 2006, Energy price forecasting—problems and proposals for such predictions, IEEE Power Energy, 4, 20, 10.1109/MPAE.2006.1597990
Hong, 2002, Locational marginal price forecasting in deregulated electricity markets using artificial intelligence, IEE Proc. Gen. Transm. Distrib., 149, 621, 10.1049/ip-gtd:20020371
Zhang, 2003, Energy clearing price prediction and confidence interval estimation with cascaded neural networks, IEEE Trans. Power Syst., 18, 99, 10.1109/TPWRS.2002.807062
Guo, 2004, Improving market clearing price prediction by using a committee machine of neural networks, IEEE Trans. Power Syst., 19, 1867, 10.1109/TPWRS.2004.837759
Gonzalez, 2005, Modeling and forecasting electricity prices with input/output hidden Markov models, IEEE Trans. Power Syst., 20, 13
Amjady, 2006, Day-ahead price forecasting of electricity markets by a new fuzzy neural network, IEEE Trans. Power Syst., 21, 887, 10.1109/TPWRS.2006.873409
Rodriguez, 2004, Energy price forecasting in the Ontario competitive power system market, IEEE Trans. Power Syst., 19, 366, 10.1109/TPWRS.2003.821470
Fan, 2007, Next-day electricity-price forecasting using a hybrid network, IET Gen. Transm. Distrib., 1, 176, 10.1049/iet-gtd:20060006
Huang, 2006, Extreme learning machine, Neurocomputing, 70, 489, 10.1016/j.neucom.2005.12.126
Zhu, 2005, Evolutionary extreme learning machine, Pattern Recognition, 38, 1759, 10.1016/j.patcog.2005.03.028
Huang, 2003, Learning capability and storage capacity of two-hidden-layer feedforward networks, IEEE Trans. Neural Networks, 14, 274, 10.1109/TNN.2003.809401
Huang, 1998, Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions, IEEE Trans. Neural Networks, 9, 224, 10.1109/72.655045
Huang, 2006, Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE Trans. Neural Networks, 17, 879, 10.1109/TNN.2006.875977
Bishop, M. Christopher, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, U.K., USA, 1996.
Tom Heskes, Practical Confidence and Prediction Intervals, Advances in Neural Information Processing Systems 9, MIT Press, 1997, pp. 176–182.
Hwang, 1997, Prediction intervals for artificial neural networks, J. Am. Stat. Assoc., 92, 748, 10.1080/01621459.1997.10474027
Efron, 1993
Davison, 1997
Zio, 2006, A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient process, IEEE Trans. Nucl. Sci., 53, 1460, 10.1109/TNS.2006.871662
Mazloumi, 2011, Prediction intervals to account for uncertainties in neural network predictions, Eng. Appl. Artif. Intell., 24, 534, 10.1016/j.engappai.2010.11.004
Khosravi, 2010, A prediction interval-based approach to determine optimal structures of neural network metamodels, Expert Syst. Appl., 37, 2377, 10.1016/j.eswa.2009.07.059
Abbas Khosravi, Saeid Nahavandi, Doug Creighton, Constructing prediction intervals for neural network metamodels of complex systems, in: International Joint Conference on Neural Networks (IJCNN), 2009, pp. 1576–1582.
Benoit, 2009, Benefits of quantile regression for the analysis of customer lifetime value in a contractual setting, Expert Syst. Appl., 36, 10475, 10.1016/j.eswa.2009.01.031
Shrestha, 2006, Machine learning approaches for estimation of prediction interval for the model output, Neural Networks, 19, 225, 10.1016/j.neunet.2006.01.012
Zhao, 2008, A statistical approach for interval forecasting of the electricity price, IEEE Trans. Power Syst., 23, 267, 10.1109/TPWRS.2008.919309
Khosravi, 2010, Construction of optimal prediction intervals for load forecasting problem, IEEE Trans. Power Syst., 25, 1496, 10.1109/TPWRS.2010.2042309
Richard Dybowski and Stephen J. Roberts, Confidence intervals and prediction intervals for feedforward neural networks, Clinical Applications of Artificial Neural Networks, Cambridge University Press, 2001.
Rodriguez, 2004, Energy price forecasting in the Ontario competitive power system market, IEEE Trans. Power Syst., 19, 366, 10.1109/TPWRS.2003.821470
Hornik, 1989, Multilayer feedforward networks are universal approximators, Neural Networks, 2, 359, 10.1016/0893-6080(89)90020-8
Serre, 2002
Rao, 1971
Lokenath Debnath, Wavelet Transforms and their Applications, PINSA-A, 64, A, No. 6, November 1998, pp. 685–713.
Yoo, 2002, Signal-dependent wavelet transform and application to lossless image compression, Electron. Lett., 38, 170
Boix, 2010, Wavelet transform application to the compression of images, Math. Comput. Model., 52, 1265, 10.1016/j.mcm.2010.02.019
Qiao, 2009, Complex wavelet based texture classification, Neurocomputing, 72, 3957, 10.1016/j.neucom.2009.06.003
Manimala, 2012, Optimization techniques for improving power quality data mining using wavelet packet based support vector machine, Neurocomputing, 77, 36, 10.1016/j.neucom.2011.08.010
Maheswaran, 2012, Comparative study of different wavelets for hydrologic forecasting, Comput. Geosci., 46, 284, 10.1016/j.cageo.2011.12.015
Simons, 2006, Automatic detection and rapid determination of earthquake magnitude by wavelet multiscale analysis of the primary arrival, Earth Planet. Sci. Lett., 250, 214, 10.1016/j.epsl.2006.07.039
Conejo, 2005, Day-ahead electricity price forecasting using the wavelet transform and arima models, IEEE Trans. Power Syst., 20, 1035, 10.1109/TPWRS.2005.846054
Nievergelt, 1999
Rocha Reis, 2005, Feature extraction via multi-resolution analysis for short term load forecasting, IEEE Trans. Power Syst., 20, 189, 10.1109/TPWRS.2004.840380
Box, George Edward Pelham, Jenkins, Gwilym, Time Series Analysis, Forecasting and Control, Holden-Day, Incorporated, 1990.
Cao, 1997, Saving computer time in constructing consistent bootstrap prediction intervals for autoregressive processes, Commun. Stat. Simul. Comput., 26, 961, 10.1080/03610919708813420
Efron, 1979, Bootstrap methods, Ann. Stat., 7, 1, 10.1214/aos/1176344552
Stine, 1987, Estimating properties of autoregressive forecasts, J. Am. Stat. Assoc., 82, 1072, 10.1080/01621459.1987.10478542
Thombs, 1990, Bootstrap prediction intervals for autoregression, J. Am. Stat. Assoc., 85, 486, 10.1080/01621459.1990.10476225
Weron, 2006
Khosravi, 2011, Comprehensive review of neural network-based prediction intervals and new advances, IEEE Trans. Neural Networks, 22, 1341, 10.1109/TNN.2011.2162110
Website of Ontario Electricity Market [Online]. Available from 〈http://www.ieso.ca〉.
PJM Website [Online]. Available from 〈http://www.pjm.com〉.
Kohavi, 1997, Wrappers for feature subset selection, Artif. Intell., 97, 273, 10.1016/S0004-3702(97)00043-X