Poincaré’s Equations for Cosserat Media: Application to Shells
Tóm tắt
In 1901, Henri Poincaré discovered a new set of equations for mechanics. These equations are a generalization of Lagrange’s equations for a system whose configuration space is a Lie group which is not necessarily commutative. Since then, this result has been extensively refined through the Lagrangian reduction theory. In the present contribution, we apply an extended version of these equations to continuous Cosserat media, i.e. media in which the usual point particles are replaced by small rigid bodies, called microstructures. In particular, we will see how the shell balance equations used in nonlinear structural dynamics can be easily deduced from this extension of the Poincaré’s result. In future, these results will be used as foundations for the study of squid locomotion, which is an emerging topic relevant to soft robotics.
Tài liệu tham khảo
Antman, S.S.: Nonlinear problems of elasticity. In: Mathematical Sciences, vol. 107. Springer, New York (2005)
Arnold, V.I.: Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits. Ann. Inst. J. Fourier 16(1), 319–361 (1966)
Arnold, V.I.: Mathematical Methods in Classical Mechanics, 2nd edn. Springer, New-York (1988)
Boyer, F., Primault, D.: The Poincaré–Chetayev equations and flexible multibody systems. J. Appl. Math. Mech. 69(6), 925–942 (2005). http://hal.archives-ouvertes.fr/hal--00672477
Boyer, F., Porez, M., Khalil, W.: Macro-continuous computed torque algorithm for a three-dimensional eel-like robot. IEEE Trans. Robot. 22(4), 763–775 (2006)
Boyer, F., Porez, M., Leroyer, A., Visonneau, M.: Fast dynamics of an eel-like robot-comparisons with Navier–Stokes simulations. IEEE Trans. Robot. 24(6), 1274–1288 (2008)
Boyer, F., Porez, M., Leroyer, A.: Poincaré–Cosserat equations for the Lighthill three-dimensional large amplitude elongated body theory: Application to robotics. J. Nonlinear Sci. 20, 47–79 (2010)
Boyer, F., Ali, S., Porez, M.: Macro-continuous dynamics for hyper-redundant robots: application to kinematic locomotion bio-inspired by elongated body animals. IEEE Trans. Robot. 28(2), 303–317 (2012)
Castrillón López, M., Ratiu, T.S., Shkoller, S.: Reduction in principal fiber bundles: covariant Euler–Poincaré equations. Proc. Am. Math. Soc. 128(7), 2155–2164 (2000)
Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)
Demoures, F., Gay-Balmaz, F., Kobilarov, M., Ratiu, T.S.: Multisymplectic lie group variational integrator for a geometrically exact beam in r3. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3492–3512 (2014)
Ebin, D.G., Marsden, J.E.: Groups of diffeomorphism and the motion of an incompressible fluid. Ann. Math 92, 102–163 (1970)
Ellis, D.C.P., Gay-Balmaz, F., Holm, D.D., Putkaradze, V., Ratiu, T.S.: Symmetry reduced dynamics of charged molecular strands. Arch. Ration. Mech. Anal. 197(3), 811–902 (2010)
Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1998)
Fox, D.D., Simo, J.C.: A drill rotation formulation for geometrically exact shells. Comput. Methods Appl. Mech. Eng. 98, 329–343 (1992)
Gay-Balmaz, F., Holm, D.D., Ratiu, T.S.: Variational principles for spin systems and the Kirchhoff rod. J. Geom. Mech. 1(4), 417–444 (2009)
Green, A.E., Naghdi, P.M.: Non-isothermal theory of rods, plates and shells. Int. J. Solids Struct. 6, 209–244 (1970)
Green, A.E., Naghdi, P.M.: On the derivation of shell theories by direct approach. J. Appl. Mech. 41(1), 173–176 (1974)
Green, A.E., Zerna, W.: Theoretical Elasticity. Clarendon Press, Oxford (1960). end ed. edition
Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)
Holm, D.D., Putkaradze, V.: Nonlocal orientation-dependent dynamics of charged strands and ribbons. C. R. Acad. Sci. Paris Ser. I 347, 1093–1098 (2009)
Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998)
Lichnerowicz, A.: Elements de Calcul Tensoriel. Jacques Gabay, Paris (1987)
Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, New-Jersey (1969)
Marle, C.-M.: On Henri Poincaré’s note: “sur une forme nouvelle des equations de la mécanique”. J. Geom. Symmetry Phys. 29, 1–38 (2013)
Marsden, J.E., Montgomery, R., Ratiu, T.S.: Reduction, symmetry, and phases in mechanics. In: Memoirs of the American Mathematical Society, vol. 88 (436). American Mathematical Society (1990)
Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity, 1st edn. Dover, Mineola (1994)
Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Springer, New York (1999)
Milne-Thomson, L.M.: Theoretical Hydrodynamics. Macmillan, London (1938)
Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. Compte Rendu de l’Académie des Sciences de Paris 132, 369–371 (1901)
Pommaret, J.F.: Partial Differential Equations and Group Theory, 1st edn. Springer, Netherlands (1994)
Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 69–76 (1945)
Renda, F., Giorelli, M., Calisti, M., Cianchetti, M., Laschi, C.: Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans. Robot. 30(5), 1109–1122 (2014)
Simmonds, J.G., Danielson, D.A.: Nonlinear shell theory with finite rotation and stress-function vectors. J. Appl. Mech. 39, 1085–1090 (1972)
Simo, J.C., Fox, D.D.: On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput. Methods Appl. Mech. Eng. 72(3), 267–304 (1989)
Simo, J.C., Marsden, J.E., Krishnaprasad, P.S.: The hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods, and plates. Arch. Ration. Mech. Anal. 104, 125–183 (1988)
Simo, J.C., Rifai, M.S., Fox, D.D.: On a stress resultant geometrically exact shell model. part vi: conserving algorithms for non-linear dynamics. Int. J. Numer. Methods Eng. 34, 117–164 (1992)
Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66(2), 125–161 (1988)
Spencer, D.C.: Overdetermined systems of partial differential equations. Bull. Am. Math. Soc. 75, 1–114 (1965)
Thomas, J.R., Hughes, Brezzi, F.: On drilling degrees of freedom. Comput. Methods Appl. Mech. Eng. 72, 105–121 (1989)
Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Rational Mech. Anal. 17, 85–112 (1964)
Verl, A., Albu-Schaeffer, A., Brock, O. (eds). Soft Robotics: Transferring Theory to Application. Springer, New York (2015)
Vu-Quoc, L.: On the algebra of two point tensors and their applications. Z. Angew. Math. Mech.: ZAMM 76(9), 540–541 (1996)
Weymouth, G.D., Triantafyllou, M.S.: Ultra-fast escape of a deformable jet-propelled body. J. Fluid Mech. 721, 367–385 (2013)