Plurisubharmonicity for the solution of the Fefferman equation and applications
Tóm tắt
In this paper, the author introduces a concept of the super-pseudoconvex domain. He proves that the solution of the Fefferman equation on a smoothly bounded strictly pseudoconvex domain D in
$${\mathbb {C}}^n$$
is plurisubharmonic in D if and only if D is super-pseudoconvex. As an application, when D is super-pseudoconvex, he gives the sharp lower bound for the bottom of the spectrum of the Laplace-Beltrami operators by using the result of Li and Wang (Int. Math. Res. Not. 4351–4371, 2012).
Từ khóa
Tài liệu tham khảo
Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampre equation. Invent. Math. 37(1), 1–44 (1976)
Chanillo, S., Chiu, H.-L., Yang, P.: Embedded Three-Dimensional CR Manifolds and the Non-negativity of Paneitz Operator. Contemp. Math. 5999, 65–82 (2013)
Caffarelli, L., Kohn, J.J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations. Comm. Pure Appl. Math. 38(2), 209–252 (1985)
Cheng, S.-Y.: Eigenvalue comparison theorems and its geometric application. Math. Z. 143, 289–297 (1975)
Cheng, S.-Y., Yau, S.-T.: On the existence of a complex Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Comm. Pure Appl. Math. 33, 507–544 (1980)
Fefferman, C.: Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. Math. 103, 395–416 (1976)
Graham, C.R.: Higher asymptotic of the complex Monge-Ampère equation. Compos. Math. 64, 133–155 (1987)
Graham, C.R., Lee, J.M.: Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains. Duke Math. J. 57(3), 697720 (1988)
Lee, J.M.: The spectrum of an asymptotically hyperbolic Einstein manifold. Comm. Anal. Geom. 3, 253–271 (1995)
Lee, J.M., Melrose, R.: Boundary behavior of the complex Monge-Ampère equation. Acta Math. 148, 159–192 (1982)
Li, P.: Harmonic functions on complete Riemannian manifolds. Handbook of Geometric Analysis, No. 1, Advanced Lectures in Mathematics, Vol. 7, International Press (2008)
Li, P., Wang, J.-P.: Comparison theorem for Kähler manifolds and positivity of spectrum. J. Differ. Geom. 69, 43–74 (2005)
Li, P., Wang, J.-P.: Complete manifolds with positive spectrum. J. Differ. Geom. 58, 501–534 (2001)
Li, S.-Y.: On the Kähler manifolds with the largest infimum of spectrum of Laplace-Beltrami operators and sharp lower bound of Ricci or holomorphic bisectional curvatures. Comm. Anal. Geom. 18, 555–578 (2010)
Li, S.-Y.: Characterization for balls by potential function of Kähler-Einstein metrics for domains in \({\mathbb{C}}^{n}\). Comm. Anal. Geom. 13(2), 461–478 (2005)
Li, S.-Y.: On the existence and regularity of Dirichlet problem for complex Monge-Ampère equations on weakly pseudoconvex domains. Calc. Var. PDEs 20, 119–132 (2004)
Li, S.-Y.: Characterization for a class of pseudoconvex domains whose boundaries having positive constant pseudo scalar curvature. Comm. Anal. Geom. 17, 17–35 (2009)
Li, S.-Y., Luk, H.S.: An explicit formula Webster pseudo Ricci curvature and its applications for characterizing balls in \({\mathbb{C}}^{n+1}\). Comm. Anal. Geom. 14, 673–701 (2006)
Li, S.-Y., Tran, M.-A.: Infimum of the spectrum of Laplace-Beltrami operator on a bounded pseudoconvex domain with a Kähler metric of Bergman type. Comm. Anal. Geom. 18, 375–394 (2010)
Li S.-Y.,Wang X.-D.: Bottom of spectrum of Kähler manifolds with strongly pseudoconvex boundary. Int. Math. Res. Notices IMRN. 2012(19), 4351–4371 (2012)
Mok N., Yau S.T.: Completeness of the Kahler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions. The mathematical heritage of Henri Poincar‘e Part 1 (Bloomington, Ind., 1980), 4159, Proc. Symposia. Pure Math., 39, Am. Math. Soc., Providence, RI (1983)
Munteanu, O.: A sharp estimate for the bottom of the spectrum of the Laplacian on Kähler manifolds. J. Differ. Geom. 83(1), 163–187 (2009)
Udagawa, S.: Compact Kähler manifolds and the eigenvalues of the Laplacian. Colloq. Math. 56(2), 341–349 (1988)
Wang, X.-D.: On conformally compact Einstein manifolds. Math. Res. Lett. 8, 671–688 (2001)