Plunging current caused by nonmonotonous water density dependence on temperature

Pleiades Publishing Ltd - Tập 51 - Trang 574-581 - 2011
V. I. Bukreev1
1Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Tóm tắt

The results of laboratory experiments are presented in which a surface jet of fresh water flowed on the inclined bottom of a freshwater tank. The main attention was focused on the plunging of the inflowing water. It is shown that plunging can occur not only in the case when the density of the inflowing water is initially greater than the water density in the tank. Under specific conditions, a jet of water with initially smaller density can also plunge. The necessary condition for this effect is that the water temperatures in the jet and in the tank should be at different sides of the maximum water density temperature.

Tài liệu tham khảo

V. I. Bukreev, “Effect of the Water-Density-Temperature Nonmonotonic Dependence on Rainwater Mixing in a Body of Fresh Water,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41(4), 567–570 (2005) [Izv., Atmos. Ocean Phys. 41 (4), 513–516(2005)]. V. I. Bukreev, “Effect of Non-Monotonic Dependence of the Density of Water on Temperature on the Distribution of the Vertical Plane Jet,” Prikl. Mekh. Tekh. Fiz. 47(2), 23–29 (2006). N. T. Glinskii, Internal waves (Nauka, Moscow, 1973) [in Russian]. A. G. Zatsepin, V. A. Gritsenko, V. V. Kremenetskii, et al., “Laboratory and Numerical Study of Gravity Currents over a Sloping Bottom,” Okeanologiya 45(1), 5–15 (2005) [Oceanology 45 (1), 1–10 (2005)]. T. R. Kil’matov and V. A. Kuz’min, “The Sealing Effect of the Mixing of Sea Water and Its Seasonal Effect in the Pacific Subarctic Pacific Ocean Front,” Izv. Ros. Akad. Nauk, Fiz. Atm. Okeana 27(8), 883–887 (1991). K. A. Nadolin, “On Penetrative Convection in the Approximation of Isothermally Incompressible Fluid,” Izv. Ross. Akad. Nauk, Mekh. Zhidkosti Gaza, No. 2, 40–52 (1996). A. I. Tikhomirov, Thermics of Large lakes (Nauka, Leningr. Otd., Leningrad, 1983) [in Russian]. K. N. Fedorov, “The Role of Densification during Mixing in the Dynamics of Oceanic Fronts,” Dokl. Akad. Nauk SSSR 261(4), 985–988 (1981). K. N. Fedorov, The Physical Nature and Structure of Oceanic Fronts (Gidrometeoizdat, Leningrad, 1983) [in Russian]. N. P. Fofonov, “Dynamic Effects of Cabbeling on the Thermocline Structure,” Okeanologiya 55(6), 824–832 (1995). I. P. Chubarenko and N. Yu. Demchenko, “Laboratory Modeling of the Structure of a Thermal Bar and Related Circulation in a Basin with a Sloping Bottom,” Okeanologiya 48(3), 356–370 (2008) [Oceanology 48 (3), 327–339 (2008)]. R. J. Adrian, “Turbulent Convection in Water Over Ice,” J. Fluid Mech. 69Part 4, 753–781 (1975). J. Akiyama and H. Stefan, “Plunging Flow into a Reservoir: Theory,” J. Hydraulic Engin. 110(4), 484–499 (1984). P. Bourne, D. Dartus, B. Tassin, and B. Vincon-Leite, “Numerical Investigation of Plunging Density Current,” J. Hydraulic Engin. 125(6), 584–594 (1999). C. J. Dallimore, J. Imberger, and B. R. Hodges, “Modeling a Plunging Underflow,” J. Hydraulic Engin. 130(11), 1068–1076 (2004). F. A. Forel, Le Leman: Monographie Limnologoque: Mechanique, Chemie, Thermique, Optique, Acustique (F. Rouge, Lausanne, 1895), Vol. 2. T. D. Foster, “An Analysis of the Cabbeling Instability in Seawater,” J. Phys. Oceanogr. 2(2), 294–301 (1972). P. R. Holland and A. Kay, “Review of the Physical and Ecological Implications of the Thermal Bar Circulation,” Limnologica 33, 153–162 (2003). S. Kostic and G. Parker, “Progradational Sand-Mud Deltas in Lakes and Reservoirs. Part 1. Theory and Numerical Modeling,” J. Hydraulic Res. 41(2), 127–140 (2003). S. Musman, “Penetrative Convection,” J. Fluid Mech. 31,Part 2, 343–360 (1968). S. B. Savage and J. Brimberg, “Analysis of Plunging Phenomena in Water Reservoirs,” J. Hydraulic Res. 13(2), 187–205 (1975). B. Singh and C. R. Shah, “Plunging Phenomena of Density Currents in Reservoirs,” La Houille Blanche 26(1), 59–64 (1971). D. T. Talley and J.-Y. Yun, “The Role of Cabbeling and Double Diffusion in Setting the Density of the North Pacific Intermediate Water Salinity Minimum,” J. Phys. Oceanogr. 36(6), 1538–1549. A. A. Townsend, “Natural Convection in Water Over an Ice Surface,” Q. J. Roy Meteorol. Soc. 90, 248–259 (1964). S. S. Zilitinkevch, K. D. Kreiman, and A. Yu. Terzhevik, “The Thermal Bar,” J. Fluid Mech. 236, 27–42 (1992).