Pleiotropic effects of negative energy balance in the postpartum dairy cow on splenic gene expression: repercussions for innate and adaptive immunity

Physiological Genomics - Tập 39 Số 1 - Trang 28-37 - 2009
D.G. Morris1, Sinéad M. Waters2, S. McCarthy3,4, J. Patton5, Bernadette Earley2, Richard Fitzpatrick4, John J. Murphy5, M.G. Diskin4, D.A. Kenny3, Andy Brass6, D.C. Wathes7
1Teagasc, Mellows Campus, Athenry, County Galway, Ireland.
2Teagasc, Grange, County Meath
3School of Agriculture, Food Science and Veterinary Medicine, University College Dublin
4Teagasc, Mellows Campus, Athenry, County Galway
5Teagasc, Moorepark, County Cork, Ireland
6School of Life Science, University of Manchester, Manchester
7Royal Veterinary College, London, United Kingdom

Tóm tắt

Increased energy demands to support lactation, coupled with lowered feed intake capacity results in negative energy balance (NEB) and is typically characterized by extensive mobilization of body energy reserves in the early postpartum dairy cow. The catabolism of stored lipid leads to an increase in the systemic concentrations of nonesterified fatty acids (NEFA) and β-hydroxy butyrate (BHB). Oxidation of NEFA in the liver result in the increased production of reactive oxygen species and the onset of oxidative stress and can lead to disruption of normal metabolism and physiology. The immune system is depressed in the peripartum period and early lactation and dairy cows are therefore more vulnerable to bacterial infections causing mastitis and or endometritis at this time. A bovine Affymetrix oligonucleotide array was used to determine global gene expression in the spleen of dairy cows in the early postpartum period. Spleen tissue was removed post mortem from five severe NEB (SNEB) and five medium NEB (MNEB) cows 15 days postpartum. SNEB increased systemic concentrations of NEFA and BHB, and white blood cell and lymphocyte numbers were decreased in SNEB animals. A total of 545 genes were altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with NRF2-mediated oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, natural killer cell signaling, p53 signaling, downregulation of IL-15, BCL-2, and IFN-γ; upregulation of BAX and CHOP and increased apoptosis with a potential negative impact on innate and adaptive immunity.

Từ khóa


Tài liệu tham khảo

Ametaj BN, Bradford BJ, Bobe G, Beitz DC.Acute phase response indicates inflammatory conditions may play a role in the pathogenesis of fatty liver in dairy cows.J Dairy Sci85: 189, 2002.

10.1038/82565

10.1016/j.bbrc.2008.08.115

Boehm T, Klamp T, Groot M, Howard JC.Cellular responses to interferon-γ.Ann Rev Immunol15: 749–795, 1977.

10.1142/S0219720005001442

Breukink HJ, Wensing T.Pathophysiology of the liver in high yielding dairy cows and its consequences for health and production.Isr J Vet Med52: 66–72, 1977.

10.1016/j.cytogfr.2006.05.001

Bugaut M.Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals.Comp Biochem Physiol86B: 439–472, 1987.

10.1089/jir.1997.17.473

10.1172/JCI119258

10.2174/1568009033481994

10.1152/ajpheart.00651.2005

10.1093/nar/gni179

10.1186/gb-2003-4-5-p3

Dyk PB.The association of prepartum non-esterified fatty acids and body condition with peripartum health problems on 95 Michigan dairy farms (M.S. thesis). East Lansing, MI: Michigan State Univ. 1995.

10.1093/jn/131.11.3041S

10.1093/nar/gkj147

10.1146/annurev.iy.11.040193.003035

10.1182/blood.V97.1.14

10.1016/j.domaniend.2006.10.002

10.1038/ng0397-269

10.1097/00075197-200111000-00018

10.1093/bioinformatics/btg405

10.1186/gb-2004-5-10-r80

10.1126/science.8178155

10.1016/j.cell.2005.05.019

10.1126/science.281.5381.1309

10.1182/blood-2007-07-099598

10.1074/jbc.M101198200

Holtenius P, Holtenius K.New aspects of ketone bodies in energy metabolism of dairy cows: a review.J Vet Med A43: 479–587, 1996.

10.1038/ni1524

10.1186/gb-2007-8-9-r183

Jarrige J.INRAtion V2.7. In:Microsoft Computer Program of Ration Formulation For Ruminant Livestock, edited by Agabriel J, Champciaux P, Espinasse C. Dijon, France: CNERTA, 1989.

10.1186/1471-2105-7-359

10.1073/pnas.92.19.8705

10.1016/S0301-6226(00)00208-6

10.1093/nar/gkj102

10.3168/jds.S0022-0302(06)72168-3

Kehrli ME Jr, Nonnecke BJ, Roth JA.Alterations in bovine neutrophil function during the periparturient period.Am J Vet Res50: 207–214, 1989.

10.1073/pnas.142206299

10.1007/s00125-006-0590-z

Lee EK, Kehrli ME.Expression of adhesion molecules on neutrophils of periparturient cows and neonatal calves.Am J Vet Res59: 37–43, 1998.

10.1074/jbc.M211558200

10.1007/s10142-006-0043-2

Li J, Lee B, Lee AS.Endoplasmic reticulum stress-induced apoptosis.J Biol Chem11:7260–7270, 2006.

10.1038/83253

10.1093/bioinformatics/btm360

10.1073/pnas.96.12.6643

10.1093/bioinformatics/btl361

10.1006/meth.2001.1262

10.1152/physiolgenomics.00188.2007

10.1084/jem.191.5.753

10.1093/nar/gni052

10.3168/jds.S0022-0302(98)75612-7

Mandal M, Kumar R.Bcl-2 expression regulates sodium butyrate-induced apoptosis in human MCF-7 breast cancer cells.Cell Growth Diff7: 311–318, 1996.

10.1128/MCB.21.4.1249-1259.2001

10.1038/nri1669

10.3168/jds.S0022-0302(06)72215-9

10.1186/1471-2105-9-164

Politis I, Zavizjon B, Cheli F, Baldi A.Expression of urokinase plasminogen activator receptor in resting and activated bovine neutrophils.J Dairy Res69: 195–204, 2002.

Rancano C, Rubio T, Correas I, Alonso MA.Genomic structure and subcellular localization of MAL, a human T-cell-specific proteolipid protein.J Biol Chem269: 8159–8164, 1994.

10.1095/biolreprod.106.055376

Ropstad E, Vik-Mo L, Refsdal AO.Levels of milk urea, plasma constituents and rumen liquid ammonia in relation to feeding of dairy cows during early lactation.Acta Vet Scand30: 199–208, 1989.

10.1017/S1357729800051845

Rozen S, Skaletsky H.Primer3 on the WWW for general users and for biologist programmers.Methods Mol Biol132: 365–386, 2000.

10.3168/jds.S0022-0302(00)74854-5

10.1016/j.tibs.2007.09.003

SAS.The SAS System for Windows (release 9.1). Cary, NC: SAS Institute, 2003.

10.1007/s00018-007-7383-5

10.1146/annurev.biochem.73.011303.074134

10.1016/j.yexmp.2006.06.001

10.3168/jds.S0022-0302(99)75335-X

10.2202/1544-6115.1027

10.1016/j.atherosclerosis.2004.07.031

10.1038/75556

Turk R, Diuretic D, Gereš D, Svetina Turk A, N, Flegar-Meštrić Z.Influence of oxidative stress and metabolic adaptation on PON1 activity and MDA level in transition dairy cows.Anim Reprod Sci108: 98–106, 2007.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F.Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Genome Biol3: research0034, 2002.

10.1016/S0165-2427(97)00069-X

10.3168/jds.2007-0289

10.1038/sj.onc.1202237

Waldman TA.Interleukin-15.Encyclopedia of Hormones, edited by Henry HL, Norman AW. Academic, 2003, p. 478–484.

10.1073/pnas.0705593104

10.1016/S1074-7613(00)80564-6

Zola H, Swart B, Nicholson I, Voss E.CD 87. In:Leukocytes and Stromal Cell Molecules: The CD Markers.Hoboken, NJ: Wiley, 2007, p. 184–185.