Pleiotropic effects of ActVI-ORFA as an unusual regulatory factor identified in the biosynthetic pathway of actinorhodin in Streptomyces coelicolor

Microbiological Research - Tập 250 - Trang 126792 - 2021
Caiyun Li1, Le Li2, Luyao Huang2, Aiying Li1,2
1Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
2The College of Life Sciences, Central China Normal University, Wuhan, 430079, PR China

Tài liệu tham khảo

Abbasi, 2020, Recombineering for genetic engineering of natural product biosynthetic pathways, Trends Biotechnol., 38, 715, 10.1016/j.tibtech.2019.12.018 Beinker, 2006, Crystal structures of SnoaL2 and AclR: two putative hydroxylases in the biosynthesis of aromatic polyketide antibiotics, J. Mol. Biol., 359, 728, 10.1016/j.jmb.2006.03.060 Bentley, 2002, Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature, 417, 141, 10.1038/417141a Caballero, 1991, Transcriptional organization and regulation of an antibiotic export complex in the producing Streptomyces culture, Mol. Gen. Genet. MGG, 228, 372, 10.1007/BF00260629 de Guillen, 2019, Structural genomics applied to the rust fungus Melampsora larici-populina reveals two candidate effector proteins adopting cystine knot and NTF2-like protein folds, Sci. Rep., 9, 18084, 10.1038/s41598-019-53816-9 Duan, 2018, Divergent biosynthesis of indole alkaloids FR900452 and spiro-maremycins, Org. Biomol. Chem., 16, 5446, 10.1039/C8OB01181H Fu, 2012, Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting, Nat. Biotechnol., 30, 440, 10.1038/nbt.2183 Fu, 2017, XdhR negatively regulates actinorhodin biosynthesis in Streptomyces coelicolor M145, FEMS Microbiol. Lett., 364, 10.1093/femsle/fnx226 Goutam, 2017, The fused SnoaL_2 domain in the Mycobacterium tuberculosis sigma factor σJ modulates promoter recognition, Nucleic Acids Res., 45, 9760, 10.1093/nar/gkx609 He, 2015, Functional characterization of a ketoreductase-encoding gene med-ORF12 involved in the formation of a stereospecific pyran ring during the biosynthesis of an antitumor antibiotic Medermycin, PLoS One, 10, e0132431, 10.1371/journal.pone.0132431 He, 2019, Dimeric pyranonaphthoquinone glycosides with anti-HIV and cytotoxic activities from a soil-derived Streptomyces, J. Nat. Prod., 82, 1813, 10.1021/acs.jnatprod.9b00022 Hopwood, 1985, Production of’ hybrid’ antibiotics by genetic engineering, Nature, 314, 642, 10.1038/314642a0 Ichinose, 1998, The granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tü22: sequence analysis and expression in a heterologous host, Chem. Biol., 5, 647, 10.1016/S1074-5521(98)90292-7 Ichinose, 2003, Cloning, sequencing and heterologous expression of the medermycin biosynthetic gene cluster of Streptomyces sp. AM-7161: towards comparative analysis of the benzoisochromanequinone gene clusters, Microbiology (Reading, Engl.), 149, 1633, 10.1099/mic.0.26310-0 Iyer, 2002, Cloning and characterization of human agmatinase, Mol. Genet. Metab., 75, 209, 10.1006/mgme.2001.3277 Kieser, 2000 Kimoloi, 2018, Modulation of the de novo purine nucleotide pathway as a therapeutic strategy in mitochondrial myopathy, Pharmacol. Res., 138, 37, 10.1016/j.phrs.2018.09.027 Kong, 2019, Regulation of antibiotic production by signaling molecules in Streptomyces, Front. Microbiol., 10, 2927, 10.3389/fmicb.2019.02927 Kumar, 2020, Insights into the metabolism pathway and functional genes of long-chain aliphatic alkane degradation in haloarchaea, Extremophiles, 24, 475, 10.1007/s00792-020-01167-z Lacret, 2019, MDN-0171, a new medermycin analogue from Streptomyces albolongus CA-186053, Nat. Prod. Res., 33, 66, 10.1080/14786419.2018.1434636 Li, 2005, Functional studies on a ketoreductase gene from Streptomyces sp. AM-7161 to control the stereochemistry in medermycin biosynthesis, Bioorg. Med. Chem., 13, 6856, 10.1016/j.bmc.2005.07.060 Lin, 2009, Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor. Mechanism and stereochemistry of the enzymatic formation of epi-isozizaene, J. Am. Chem. Soc., 131, 6332, 10.1021/ja901313v Livak, 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 25, 402, 10.1006/meth.2001.1262 Lü, 2015, Accumulation of a bioactive benzoisochromanequinone compound kalafungin by a wild type antitumor-medermycin-producing streptomycete strain, PLoS One, 10, 10.1371/journal.pone.0117690 Martín, 2010, Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces, Curr. Opin. Microbiol., 13, 263, 10.1016/j.mib.2010.02.008 Oja, 2015, Effective antibiofilm polyketides against staphylococcus aureus from the pyranonaphthoquinone biosynthetic pathways of Streptomyces species, Antimicrob. Agents Chemother., 59, 6046, 10.1128/AAC.00991-15 Oliveira, 2020, The novel ECF56 SigG1-RsfG system modulates morphological differentiation and metal-ion homeostasis in Streptomyces tsukubaensis, Sci. Rep., 10, 21728, 10.1038/s41598-020-78520-x Robien, 1992, Three-dimensional solution structure of the E3-binding domain of the dihydrolipoamide succinyltransferase core from the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli, Biochemistry, 31, 3463, 10.1021/bi00128a021 Salaski, 2009, Pyranonaphthoquinone lactones: a new class of AKT selective kinase inhibitors alkylate a regulatory loop cysteine, J. Med. Chem., 52, 2181, 10.1021/jm900075g Sarić, 2020, The AHR pathway represses TGFβ-SMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma, Sci. Rep., 10, 148, 10.1038/s41598-019-56876-z Sultana, 2004, Structure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation, EMBO J., 23, 1911, 10.1038/sj.emboj.7600201 Taguchi, 2007, Possible involvement of ActVI-ORFA in transcriptional regulation of actVI tailoring-step genes for actinorhodin biosynthesis, FEMS Microbiol. Lett., 269, 234, 10.1111/j.1574-6968.2007.00627.x Vuksanovic, 2020, Structural characterization of three noncanonical NTF2-like superfamily proteins: implications for polyketide biosynthesis, Acta Crystallogr. Sec. F-Struct. Biol. Commun., 76, 372, 10.1107/S2053230X20009814 Wang, 2009, Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator, Proc. Natl. Acad. Sci. U. S. A., 106, 8617, 10.1073/pnas.0900592106 Wang, 2016, RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression, Nat. Protoc., 1, 1175, 10.1038/nprot.2016.054 Wietzorrek, 1997, A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold, Mol. Microbiol., 25, 1181, 10.1046/j.1365-2958.1997.5421903.x Wu, 2017, Discovery of C-Glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 by a combined NMR-based metabolomics and bioinformatics workflow, J. Nat. Prod., 80, 269, 10.1021/acs.jnatprod.6b00478 Wu, 2019, The role of C-terminal extensions in controlling ECF σ factor activity in the widely conserved groups ECF41 and ECF42, Mol. Microbiol., 112, 498, 10.1111/mmi.14261 Zhou, 2020, Lactoquinomycin C and D, two new medermycin derivatives from the marine-derived Streptomyces sp. SS17A, Nat. Prod. Res., 34, 1213, 10.1080/14786419.2018.1556265