Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aftalion, 1989, Early Carboniferous U–Pb zircon age of garnetiferous, perpotassic granulites, Blanský les massif, Czechoslovakia, Neues Jahrbuch für Mineralogie, Monatsheftem,, 4, 145
Amelin, 2000, Early-middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains, Geochimica et Cosmochimica Acta,, 64, 4205, 10.1016/S0016-7037(00)00493-2
Black, 1978, The age of the Mud Tank carbonatite, Strangways Range, Northern Territory, BMR Journal of Australian Geology and Geophysics,, 3, 227
Black, 2003, TEMORA 1: a new zircon standard for phanerozoic U–Pb geochronology, Chemical Geology, 200, 155, 10.1016/S0009-2541(03)00165-7
Black, 2004, Improved Pb-206/U-218 microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards, Chemical Geology, 205, 115, 10.1016/j.chemgeo.2004.01.003
Black, 2003, The application of SHRIMP to phanerozoic geochronology: a critical appraisal of four zircon standards, Chemical Geology, 200, 171, 10.1016/S0009-2541(03)00166-9
Blichert-Toft, 1997, The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system, Earth Planetary Science Letters, 148, 243, 10.1016/S0012-821X(97)00040-X
Carswell, 1993, Thermobarometry and geotectonic significance of high-pressure granulites: examples from the Moldanubian zone of the Bohemian Massif in Lower Austria, Journal of Petrology, 34, 427, 10.1093/petrology/34.3.427
Chakoumakos, 1987, Alpha-decay-induced fracturing in zircon: the transition from the crystalline to the metamict state, Science, 236, 1556, 10.1126/science.236.4808.1556
Chu, 2002, Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections, Journal of Analytical Atomic Spectrometry, 17, 1567, 10.1039/b206707b
Cooke, 2000, High-pressure/temperature metamorphism in the St. Leonhard Granulite Massif, Austria: evidence from intermediate pyroxene-bearing granulites, International Journal of Earth Sciences, 89, 631, 10.1007/s005310000123
Corfu, F., 2007. Comment to short-communication ‘Comment: Hf-isotope heterogeneity in zircon 91500′ by W.L. Griffin, N.J. Pearson, E.A. Belousova and A. Saeed (Chemical Geology 233 (2006) 358–363). Chemical Geology 244, 350–353.
Crowley, 2007, U–Pb dating of zircon in the Bishop Tuff at the millennial scale, Geology, 35, 1123, 10.1130/G24017A.1
1995
Debievre, 1993, Table of the isotopic compositions of the elements, International Journal of Mass Spectrometry and Ion Processes, 123, 149, 10.1016/0168-1176(93)87009-H
Dunstan, 1980, Absolute isotopic abundance and the atomic weight of a reference sample of thallium, Journal of Research of the National Bureau of Standards, 85, 1, 10.6028/jres.085.001
Fiala, 1995, Moldanubian Zone — stratigraphy, 417
Fiala, 1987, Moldanubian granulites and related rocks: petrology, geochemistry, and radioactivity, Rozpravy Československé akademie věd, řada matematických a přírodních věd, 97, 1
Firestone, 1996
Franke, 1989, Tectonostratigraphic units in the Variscan Belt of Central Europe, Geological Society of America Special Paper, 230, 67, 10.1130/SPE230-p67
Franke, 2000, The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution, vol. 179, 35
Friedl, 2003, U–Pb SHRIMP dating and trace element investigations on multiple zoned zircons from a South-Bohemian granulite, Journal of the Czech Geological Society,, 48, 51
Fuchs, 1976, Zur Geologie des Kristallins der süddlichen Böhmishe Masse, Jahre plante die Geologische Bundesanstalt, 119, 1
Gerdes, 2006, Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany, Earth and Planetary Science Letters, 249, 47, 10.1016/j.epsl.2006.06.039
Gerstenberger, 1997, A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations, Chemical Geology, 136, 309, 10.1016/S0009-2541(96)00033-2
Götze, 2000, Cathodoluminescence microscopy and spectroscopy in applied mineralogy, Freiberger Forschungshefte C, 485
Griffin, 2006, Comment: Hf-isotope heterogeneity in zircon 91500, Chemical Geology, 233, 358, 10.1016/j.chemgeo.2006.03.007
Griffin, W.L., Pearson, N.J., Belousova, E.A., Saeed, A., 2007. Reply to “Comment to short-communication ‘Comment: Hf-isotope heterogeneity in zircon 91500’ by W.L. Griffin, N.J. Pearson, E.A. Belousova and A. Saeed (Chemical Geology 233 (2006) 358–363)” by F. Corfu. Chemical Geology 244, 354–356.
Hanchar, 2001, Strain-limited rare-earth element incorporation in zircon
Horn, 2000, Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U–Pb geochronology, Chemical Geology, 164, 281, 10.1016/S0009-2541(99)00168-0
Horstwood, 2003, Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS, Journal of Analytical Atomic Spectrometry, 18, 837, 10.1039/B304365G
Hoskin, 2003, The composition of zircon and igneous and metamorphic petrogenesis, vol. 53, 27
Iizuka, 2005, Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique, Chemical Geology,, 220, 121, 10.1016/j.chemgeo.2005.03.010
Irmer, 1985, Zum Einfluß der Apparatefunktion auf die Bestimmung von Streuquerschnitten und Lebensdauern aus optischen Phononenspektren, Experimentelle Technik der Physik, 33, 501
Jackson, 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology, Chemical Geology,, 211, 47, 10.1016/j.chemgeo.2004.06.017
Jaffey, 1971, Precision measurement of half-lives and specific activities of 235U and 228U, Physics Review Section C, 4, 1889, 10.1103/PhysRevC.4.1889
Janoušek, 2004, Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif, Transactions of the Royal Society of Edinburgh: Earth Sciences, 95, 141, 10.1017/S0263593304000148
Janoušek, 2007, Hyperpotassic granulites from Blanský les (Moldanubian Zone, Bohemian Massif) revisited, Journal of Geosciences, 52, 73
Kelly, 2005, An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica, Contributions to Mineralogy and Petrology, 149, 57, 10.1007/s00410-004-0635-6
Ketchum, 2001, Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin-foredeep sequence based on petrochemistry and U–Pb (TIMS and LAM-ICP-MS) geochronology, Precambrian Research, 105, 331, 10.1016/S0301-9268(00)00118-2
Kinny, 1991, A reconnaissance ion-probe study of hafnium isotopes in zircons, Geochimica et Cosmochimica Acta, 55, 849, 10.1016/0016-7037(91)90346-7
1981
Košler, 2002, U–Pb dating of detrital zircons for sediment provenance studies — a comparison of laser ablation ICP-MS and SIMS techniques, Chemical Geology, 182, 605, 10.1016/S0009-2541(01)00341-2
Košler, 2003, Present trends and the future of zircon in geochronology: laser ablation ICP-MS, vol. 53, 243
Kotková, 2003, Pressure–temperature–time evolution of granulite clasts from Lower Carboniferous conglomerates — evidence for rapid exhumation at the eastern margin of the Variscan Bohemian Massif, Geophysical Research Abstracts, 5, 434
Kotková, 1997, Mineral controls on the trace element and REE geochemistry of high-pressure leucogranulites from the Bohemian Massif, Journal of the Czech Geological Society, 42, 40
Krogh, 1973, Low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations, Geochimica et Cosmochimica Acta, 37, 485, 10.1016/0016-7037(73)90213-5
Kröner, 2000, Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes, Contributions to Mineralogy and Petrology, 138, 127, 10.1007/s004100050013
Kröner, 1988, U–Pb zircon and Sm–Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia, Contributions to Mineralogy and Petrology, 99, 257, 10.1007/BF00371466
Lapen, 2004, High precision Lu and Hf isotope analyses of both spiked and unspiked samples: a new approach, Geochemistry, Geophysics and Geosystems, 5, 10.1029/2003GC000582
Lee, 1995, Self-induced fracture generation in zircon, Journal of Geophysical Research, 100, 17753, 10.1029/95JB01682
Ludwig, 1980, Calculation of uncertainties of U–Pb isotope data, Earth and Planetary Science Letters, 46, 212, 10.1016/0012-821X(80)90007-2
Ludwig, 2003
Matte, 1990, Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing, Tectonophysics, 177, 151, 10.1016/0040-1951(90)90279-H
Mattinson, 2003, CA (chemical abrasion)-TIMS: high-resolution U–Pb zircon geochronology combining high-temperature annealing of radiation damage and multi-step partial dissolution analysis, vol. 84 (46)
Mattinson, 2005, Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages, Chemical Geology, 220, 47, 10.1016/j.chemgeo.2005.03.011
Murakami, 1991, Alpha-decay event damage in zircon, American Mineralogist, 76, 1510
Nasdala, 1995, The degree of metamictization in zircon: a Raman spectroscopic study, European Journal of Mineralogy, 7, 471, 10.1127/ejm/7/3/0471
Nasdala, 2006, Effects of natural radiation damage on back-scattered electron images of single-crystals of minerals, American Mineralogist, 91, 1738, 10.2138/am.2006.2241
Nasdala, 2001, Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage, Contributions to Mineralogy and Petrology, 141, 125, 10.1007/s004100000235
Nasdala, 2003, Spectroscopic methods applied to zircon, vol. 53, 427
Nebel-Jacobsen, 2005, Separation of U, Pb, Lu, and Hf from single zircons for combined U–Pb dating and Hf isotope measurements by TIMS and MC-ICPMS, Chemical Geology,, 220, 105, 10.1016/j.chemgeo.2005.03.009
O'Brien, 2003, High-pressure granulites: formation, recovery of peak conditions and implications for tectonics, Journal of Metamorphic Geology, 21, 3, 10.1046/j.1525-1314.2003.00420.x
Owen, 1996, Contrasting corona structures in mafic granulite from the Blanský Les complex, Bohemian Massif, Czech Republic, Canadian Mineralogist, 34, 959
Paces, 1993, Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights into physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system, Journal of Geophysical Research, 98, 13997, 10.1029/93JB01159
Patchett, 1983, Importance of the Lu–Hf isotopic system in studies of planetary chronology and chemical evolution, Geochimica et Cosmochimica Acta, 47, 81, 10.1016/0016-7037(83)90092-3
Patchett, 1980, A routine high-precision method for Lu–Hf isotope geochemistry and chronology, Contributions to Mineralogy and Petrology, 75, 263, 10.1007/BF01166766
Pupin, 1980, Zircon and granite petrology, Contributions to Mineralogy and Petrology, 73, 207, 10.1007/BF00381441
Roberts, 1997, Do U–Pb zircon ages from granulites reflect peak metamorphic conditions?, Geology, 25, 319, 10.1130/0091-7613(1997)025<0319:DUPZAF>2.3.CO;2
Schmitz, 2003, Evaluation of Duluth Complex anorthositic series (AS3) zircon as a U–Pb geochronological standard, new high-precision isotope dilution thermal ionization mass spectrometry results, Geochimica et Cosmochimica Acta,, 67, 3665, 10.1016/S0016-7037(03)00200-X
Schmitz, 2007, Derivation of isotope ratios, errors and error correlations for U–Pb geochronology using 205Pb–235U–(233U)-spiked isotope dilution thermal ionization mass spectrometric data, Geochemistry, Geophysics and Geosystems, 8, 10.1029/2006GC001492
Sláma, 2007, Behaviour of zircon in high-grade metamorphic rocks — evidence from Hf isotopes, trace elements and textural studies, Contributions to Mineralogy and Petrology, 154, 335, 10.1007/s00410-007-0196-6
Stacey, 1975, Approximation of terrestrial lead. isotope evolution by a two-stage model, Earth and Planetary Science Letters, 26, 207, 10.1016/0012-821X(75)90088-6
Stern, 2001, A new isotopic and trace element standard for the ion microprobe: preliminary TIMS U–Pb and electron microprobe data, current research
Stern, 2003, Assessment of errors in SIMS zircon U–Pb geochronology using a natural zircon standard and NIST SRM 610 glass, Chemical Geology,, 197, 111, 10.1016/S0009-2541(02)00320-0
Svojtka, 2002, Dating granulite-facies structures and the exhumation of lower crust in the Moldanubian Zone of the Bohemian Massif, International Journal of Earth Sciences, 91, 373, 10.1007/s00531-001-0230-2
Taylor, 1985
van Breemen, 1982, Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe, Transactions of the Royal Society of Edinburgh, Earth Sciences, 73, 89, 10.1017/S0263593300009639
Vrána, 1989, Perpotassic granulites from southern Bohemia — a new rock-type derived from partial melting of crustal rocks under upper mantle conditions, Contributions to Mineralogy and Petrology, 103, 510, 10.1007/BF01041756
Vrána, 1995, Metamorphic evolution, 453
Wendt, 1994, U–Pb zircon and Sm–Nd dating of Moldanubian HP/HT granulites from south Bohemia, Czech Republic, Journal of the Geological Society of London, 151, 83, 10.1144/gsjgs.151.1.0083
Whitehouse, 1997, Ion-microprobe U–Pb zircon geochronology and correlation of Archaean gneisses from the Lewisian Complex of Gruinard Bay, north-west Scotland, Geochimica et Cosmochimica Acta, 61, 4429, 10.1016/S0016-7037(97)00251-2
Whitehouse, 1999, Age significance of U–Th–Pb zircon data from early Archaean rocks of west Greenland—a reassessment based on combined ion-microprobe and imaging studies, Chemical Geology, 160, 201, 10.1016/S0009-2541(99)00066-2
Wiedenbeck, 1995, Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses, Geostandards Newsletter, 19, 1, 10.1111/j.1751-908X.1995.tb00147.x
Wiedenbeck, 2004, Further characterisation of the 91500 zircon crystal, Geostandards and Geoanalytical Research, 28, 9, 10.1111/j.1751-908X.2004.tb01041.x
Woodhead, 2005, A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination, Geostandards and Geoanalytical Research, 29, 183, 10.1111/j.1751-908X.2005.tb00891.x
Woodhead, 2004, Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation, Chemical Geology, 209, 121, 10.1016/j.chemgeo.2004.04.026