Sự tiến triển của tính dẻo của một hợp kim nhôm-magiê dưới các thay đổi đột ngột của đường đi ứng suất

International Journal of Material Forming - Tập 15 - Trang 1-14 - 2022
Junhe Lian1, Wenqi Liu1, Xabier Gastañares1,2, Rongfei Juan1, Joseba Mendiguren2
1Advanced Manufacturing and Materials, Department of Mechanical Engineering, Aalto University, Espoo, Finland
2Mechanical and Industrial Manufacturing Department, Mondragon University, Mondragon, Spain

Tóm tắt

Trong quá trình hình thành và chế tạo vật liệu kỹ thuật, hành vi dẻo có thể tiến triển đáng kể do lịch sử biến dạng phức tạp. Do đó, nghiên cứu này nhằm mô tả sự tiến triển về tính dẻo của một hợp kim nhôm-magiê dưới tải trọng đơn giản đơn điệu và không đơn điệu với những thay đổi đột ngột của đường đi ứng suất. Thay vì chỉ tập trung vào một trạng thái ứng suất đơn lẻ trong quá trình tải trọng bước đầu như hầu hết các nghiên cứu trong tài liệu, chương trình thử nghiệm đường đi biến dạng không đơn điệu hiện tại điều tra ba trạng thái ứng suất – kéo trục đơn, kế hoạch biến dạng và kéo hai trục – trong quá trình tải trọng bước đầu và kết hợp chúng với một tải trọng kéo trục đơn ở bước thứ hai theo hướng ban đầu và vuông góc với hướng tải đầu tiên. Sự kết hợp này tạo ra dữ liệu ứng suất-biến dạng không đơn điệu trong một phổ khá lớn và phân tán theo tham số Schmitt. Kết quả cho thấy rằng hợp kim nhôm-magiê cho thấy một hiện tượng độc đáo với độ bền dưới kéo thấp hơn khi tải lại so với các trường hợp đơn điệu đi kèm với sự gia tăng ổn định của ứng suất vượt qua giá trị đơn điệu ở các biến dạng lớn. Sự gia tăng ứng suất cũng như tỷ lệ cứng lên diễn ra cho đến khi biến dạng đồng nhất và do đó được cho là cứng lên vĩnh viễn. Hành vi không đơn điệu toàn diện được cung cấp bởi chương trình thí nghiệm mới trong nghiên cứu này có thể hỗ trợ thêm cho sự phát triển của các mô hình vật liệu và hiểu biết sâu sắc về các cơ chế cơ bản.

Từ khóa

#hợp kim nhôm-magiê #hành vi dẻo #quá trình biến dạng #ứng suất-biến dạng #cơ chế vật liệu

Tài liệu tham khảo

Chin-Chan C (1982) An investigation of the strain path dependence of the forming limit curve. Int J Solids Struct 18(3):205–215. https://doi.org/10.1016/0020-7683(82)90003-8 Barata da Rocha A, Barlat F, Jalinier JM (1985) Prediction of the forming limit diagrams of anisotropic sheets in linear and non-linear loading. Mater Sci Eng 68(2):151–164. https://doi.org/10.1016/0025-5416(85)90404-5 Graf A, Hosford W (1994) The influence of strain-path changes on forming limit diagrams of A1 6111 T4. Int J Mech Sci 36(10):897–910. https://doi.org/10.1016/0020-7403(94)90053-1 Stoughton TB (2000) A general forming limit criterion for sheet metal forming. Int J Mech Sci 42(1):1–27. https://doi.org/10.1016/S0020-7403(98)00113-1 Kuroda M, Tvergaard V (2000) Effect of strain path change on limits to ductility of anisotropic metal sheets. Int J Mech Sci 42(5):867–887. https://doi.org/10.1016/S0020-7403(99)00029-6 Manopulo N, Hora P, Peters P, Gorji M, Barlat F (2015) An extended Modified Maximum Force Criterion for the prediction of localized necking under non-proportional loading. Int J Plast 75:189–203 Ha J, Lee M-G, Barlat F (2013) Strain hardening response and modeling of EDDQ and DP780 steel sheet under non-linear strain path. Mech Mater 64:11–26. https://doi.org/10.1016/j.mechmat.2013.04.004 Wen W, Borodachenkova M, Tomé CN, Vincze G, Rauch EF, Barlat F et al (2015) Mechanical behavior of Mg subjected to strain path changes: Experiments and modeling. Int J Plast 73:171–183. https://doi.org/10.1016/j.ijplas.2014.10.009 Zaman SB, Barlat F, Kim J-H (2018) Deformation-induced anisotropy of uniaxially prestrained steel sheets. Int J Solids Struct 134:20–29. https://doi.org/10.1016/j.ijsolstr.2017.10.029 Vincze G, Barlat F, Rauch EF, Tomé CN, Butuc MC, Grácio JJ (2013) Experiments and modeling of low carbon steel sheet subjected to double strain path changes. Metall and Mater Trans A 44(10):4475–4479. https://doi.org/10.1007/s11661-013-1895-4 Vincze G, Butuc MC, Barlat F, Lopes AB, Silva TFV (2019) Strain path changes in aluminum. AIP Conf Proc 2113(1):160013. https://doi.org/10.1063/1.5112710 Tarigopula V, Hopperstad OS, Langseth M, Clausen AH (2008) Elastic-plastic behaviour of dual-phase, high-strength steel under strain-path changes. Eur J Mech A Solids 27(5):764–782. https://doi.org/10.1016/j.euromechsol.2008.01.002 Mánik T, Holmedal B, Hopperstad OS (2015) Strain-path change induced transients in flow stress, work hardening and r-values in aluminum. Int J Plast 69:1–20. https://doi.org/10.1016/j.ijplas.2015.01.004 Qin J, Holmedal B, Hopperstad OS (2018) A combined isotropic, kinematic and distortional hardening model for aluminum and steels under complex strain-path changes. Int J Plast 101:156–169. https://doi.org/10.1016/j.ijplas.2017.10.013 Wilson DV, Zandrahimi M, Roberts WT (1990) Effects of changes in strain path on work-hardening in CP aluminium and an Al-Cu-Mg alloy. Acta Metall Mater 38(2):215–226. https://doi.org/10.1016/0956-7151(90)90051-H Barlat F, Duarte JMF, Gracio JJ, Lopes AB, Rauch EF (2003) Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample. Int J Plast 19(8):1215–1244. https://doi.org/10.1016/S0749-6419(02)00020-7 Rauch EF, Gracio JJ, Barlat F, Vincze G (2011) Modelling the plastic behaviour of metals under complex loading conditions. Model Simul Mater Sci 19(3):035009. https://doi.org/10.1088/0965-0393/19/3/035009 Wen W, Borodachenkova M, Tomé CN, Vincze G, Rauch EF, Barlat F et al (2016) Mechanical behavior of low carbon steel subjected to strain path changes: Experiments and modeling. Acta Mater 111:305–314. https://doi.org/10.1016/j.actamat.2016.03.075 Li F, Bate PS (1991) Strain path change effects in cube textured aluminium sheet. Acta Metall Mater 39(11):2639–2650. https://doi.org/10.1016/0956-7151(91)90080-K Bauschinger J (1881) Changes of the elastic limit and the modulus of elasticity on various metals. Zivilingenieur 27:289–348 Hasegawa T, Yakou T, Karashima S (1975) Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium. Mater Sci Eng 20:267–276. https://doi.org/10.1016/0025-5416(75)90159-7 Rao BVN, Laukonis JV (1983) Microstructural mechanism for the anomalous tensile behavior of aluminum-killed steel prestrained in plane strain tension. Mater Sci Eng 60(2):125–135. https://doi.org/10.1016/0025-5416(83)90182-9 Fernandes JV, Schmitt JH (1983) Dislocation microstructures in steel during deep drawing. Philos Mag A 48(6):841–870. https://doi.org/10.1080/01418618308244323 Rauch EF, Schmitt JH (1989) Dislocation substructures in mild steel deformed in simple shear. Mater Sci Eng, A 113:441–448. https://doi.org/10.1016/0921-5093(89)90331-6 Lopes AB, Barlat F, Gracio JJ, Ferreira Duarte JF, Rauch EF (2003) Effect of texture and microstructure on strain hardening anisotropy for aluminum deformed in uniaxial tension and simple shear. Int J Plast 19(1):1–22. https://doi.org/10.1016/S0749-6419(01)00016-X Clausmeyer T, Gerstein G, Bargmann S, Svendsen B, van den Boogaard AH, Zillmann B (2013) Experimental characterization of microstructure development during loading path changes in bcc sheet steels. J Mater Sci 48(2):674–689. https://doi.org/10.1007/s10853-012-6780-9 Thuillier S, Rauch EF (1994) Development of microbands in mild steel during cross loading. Acta Metall Mater 42(6):1973–1983. https://doi.org/10.1016/0956-7151(94)90022-1 Rauch EF, Thuillier S (1993) Rheological behaviour of mild steel under monotonic loading conditions and cross-loading. Mater Sci Eng A 164(1):255–259. https://doi.org/10.1016/0921-5093(93)90673-3 Rauch EF (1997) The stresses and work hardening rates of mild steel with different dislocation patterns. Mater Sci Eng A 234–236:653–656. https://doi.org/10.1016/S0921-5093(97)00357-2 Mughrabi H (1983) Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall 31(9):1367–1379. https://doi.org/10.1016/0001-6160(83)90007-X Goerdeler M, Gottstein G (2001) A microstructural work hardening model based on three internal state variables. Mater Sci Eng, A 309–310:377–381. https://doi.org/10.1016/S0921-5093(00)01728-7 Prager W (1949) Recent developments in the mathematical theory of plasticity. J Appl Phys 20(3):235–241. https://doi.org/10.1063/1.1698348 Chaboche JL (1986) Time-independent constitutive theories for cyclic plasticity. Int J Plast 2(2):149–188. https://doi.org/10.1016/0749-6419(86)90010-0 Yoshida F, Uemori T (2002) A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation. Int J Plast 18(5):661–686. https://doi.org/10.1016/S0749-6419(01)00050-X Lee M-G, Kim D, Kim C, Wenner ML, Wagoner RH, Chung K (2007) A practical two-surface plasticity model and its application to spring-back prediction. Int J Plast 23(7):1189–1212. https://doi.org/10.1016/j.ijplas.2006.10.011 Barlat F, Gracio JJ, Lee MG, Rauch EF, Vincze G (2011) An alternative to kinematic hardening in classical plasticity. Int J Plast 27(9):1309–1327. https://doi.org/10.1016/j.ijplas.2011.03.003 Barlat F, Vincze G, Gracio JJ, Lee MG, Rauch EF, Tome CN (2014) Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels. Int J Plast 58:201–218 Barlat F, Yoon S-Y, Lee S-Y, Wi M-S, Kim J-H (2020) Distortional plasticity framework with application to advanced high strength steel. Int J Solids Struct 202:947–962. https://doi.org/10.1016/j.ijsolstr.2020.05.014 Jeong Y, Barlat F, Tomé CN, Wen W (2017) A comparative study between micro- and macro-mechanical constitutive models developed for complex loading scenarios. Int J Plast 93:212–228. https://doi.org/10.1016/j.ijplas.2016.07.015 Kitayama K, Tomé CN, Rauch EF, Gracio JJ, Barlat F (2013) A crystallographic dislocation model for describing hardening of polycrystals during strain path changes. Application to low carbon steels. Int J Plast 46:54–69. https://doi.org/10.1016/j.ijplas.2012.09.004 Peeters B, Kalidindi SR, Van Houtte P, Aernoudt E (2000) A crystal plasticity based work-hardening/softening model for b.c.c. metals under changing strain paths. Acta Mater 48(9):2123–33. https://doi.org/10.1016/S1359-6454(00)00047-1 Peeters B, Seefeldt M, Teodosiu C, Kalidindi SR, Van Houtte P, Aernoudt E (2001) Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain paths: I. An integrated model based on substructure and texture evolution, and its prediction of the stress–strain behaviour of an IF steel during two-stage strain paths. Acta Mater 49(9):1607–19. https://doi.org/10.1016/S1359-6454(01)00066-0 Kim H, Barlat F, Lee Y, Zaman SB, Lee CS, Jeong Y (2018) A crystal plasticity model for describing the anisotropic hardening behavior of steel sheets during strain-path changes. Int J Plast 111:85–106. https://doi.org/10.1016/j.ijplas.2018.07.010 Sang H, Lloyd DJ (1979) The influence of biaxial prestrain on the tensile properties of three aluminum alloys. Metall Trans A 10(11):1773–1776. https://doi.org/10.1007/BF02811714 Wagoner RH, Laukonis JV (1983) Plastic behavior of aluminum-killed steel following plane-strain deformation. Metall Trans A 14(7):1487–1495. https://doi.org/10.1007/BF02664833 van Riel M, van den Boogaard AH (2007) Stress–strain responses for continuous orthogonal strain path changes with increasing sharpness. Scripta Mater 57(5):381–384. https://doi.org/10.1016/j.scriptamat.2007.05.005 Hama T, Namakawa R, Maeda Y, Maeda Y (2021) Prediction of work-hardening behavior under various loading paths in 5083-O aluminum alloy sheet using crystal plasticity models. Mater Trans 62(8):1124–1132. https://doi.org/10.2320/matertrans.MT-M2021020 Kaufman JG (2000) Introduction to aluminum alloys and tempers. ASM international, Materials Park Liu W, Lian J, Aravas N, Münstermann S (2020) A strategy for synthetic microstructure generation and crystal plasticity parameter calibration of fine-grain-structured dual-phase steel. Int J Plast 126:102614. https://doi.org/10.1016/j.ijplas.2019.10.002 Bachmann F, Hielscher R, Schaeben H (2010) Texture Analysis with MTEX – Free and Open Source Software Toolbox. Solid State Phenom 160:63–68. https://doi.org/10.4028/www.scientific.net/SSP.160.63 Liu W, Lian J (2021) Stress-state dependence of dynamic strain aging: Thermal hardening and blue brittleness. Int J Miner Metall Mater 28(5):854–866. https://doi.org/10.1007/s12613-021-2250-1 Shen F, Münstermann S, Lian J (2020) An evolving plasticity model considering anisotropy, thermal softening and dynamic strain aging. Int J Plast 132:102747. https://doi.org/10.1016/j.ijplas.2020.102747 Lee S-J, Kim J, Kane SN, Cooman BCD (2011) On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Mater 59(17):6809–6819. https://doi.org/10.1016/j.actamat.2011.07.040 Wang XG, Wang L, Huang MX (2017) Kinematic and thermal characteristics of Lüders and Portevin-Le Châtelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater 124:17–29. https://doi.org/10.1016/j.actamat.2016.10.069 Yang F, Luo H, Pu E, Zhang S, Dong H (2018) On the characteristics of Portevin–Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity. Int J Plast 103:188–202. https://doi.org/10.1016/j.ijplas.2018.01.010 Chandran S, Liu W, Lian J, Münstermann S, Verleysen P (2022) Dynamic strain aging in DP1000: Effect of temperature and strain rate. Mater Sci Eng A 832:142509. https://doi.org/10.1016/j.msea.2021.142509 Aboulfadl H, Deges J, Choi P, Raabe D (2015) Dynamic strain aging studied at the atomic scale. Acta Mater 86:34–42. https://doi.org/10.1016/j.actamat.2014.12.028 Benallal A, Berstad T, Børvik T, Hopperstad OS, Koutiri I, de Codes RN (2008) An experimental and numerical investigation of the behaviour of AA5083 aluminium alloy in presence of the Portevin–Le Chatelier effect. Int J Plast 24(10):1916–1945. https://doi.org/10.1016/j.ijplas.2008.03.008 Kreyca J, Kozeschnik E (2018) State parameter-based constitutive modelling of stress strain curves in Al-Mg solid solutions. Int J Plast 103:67–80. https://doi.org/10.1016/j.ijplas.2018.01.001 Cheng J, Nemat-Nasser S (2000) A model for experimentally-observed high-strain-rate dynamic strain aging in titanium. Acta Mater 48(12):3131–3144. https://doi.org/10.1016/S1359-6454(00)00124-5 Neuhäuser H, Klose FB, Hagemann F, Weidenmüller J, Dierke H, Hähner P (2004) On the PLC effect in strain-rate and stress-rate controlled tests–studies by laser scanning extensometry. J Alloy Compd 378(1):13–18. https://doi.org/10.1016/j.jallcom.2003.10.064 Schmitt JH, Aernoudt E, Baudelet B (1985) Yield loci for polycrystalline metals without texture. Mater Sci Eng 75(1):13–20. https://doi.org/10.1016/0025-5416(85)90173-9 Schmitt JH, Shen EL, Raphanel JL (1994) A parameter for measuring the magnitude of a change of strain path: Validation and comparison with experiments on low carbon steel. Int J Plast 10(5):535–551. https://doi.org/10.1016/0749-6419(94)90013-2 Holmedal B, Houtte PV, An Y (2008) A crystal plasticity model for strain-path changes in metals. Int J Plast 24(8):1360–1379. https://doi.org/10.1016/j.ijplas.2007.09.007 Qin J, Holmedal B, Zhang K, Hopperstad OS (2017) Modeling strain-path changes in aluminum and steel. Int J Solids Struct 117:123–136. https://doi.org/10.1016/j.ijsolstr.2017.03.032 Qin J, Holmedal B, Hopperstad OS (2019) Experimental characterization and modeling of aluminum alloy AA3103 for complex single and double strain-path changes. Int J Plast 112:158–171. https://doi.org/10.1016/j.ijplas.2018.08.011 Kim D, Barlat F, Bouvier S, Rabahallah M, Balan T, Chung K (2007) Non-quadratic anisotropic potentials based on linear transformation of plastic strain rate. Int J Plast 23(8):1380–1399 Lee S-Y, Kim J-M, Kim J-H, Barlat F (2020) Validation of homogeneous anisotropic hardening model using non-linear strain path experiments. Int J Mech Sci 183:105769. https://doi.org/10.1016/j.ijmecsci.2020.105769 Gutknecht F, Traphöner H, Clausmeyer T, Tekkaya AE (2021) Characterization of flow induced anisotropy in sheet metal at large strain. Exp Mech. https://doi.org/10.1007/s11340-021-00776-9 Barlat F, Richmond O (2003) Modelling macroscopic imperfections for the prediction of flow localization and fracture. Fatigue Fract Eng Mater Struct 26(4):311–321. https://doi.org/10.1046/j.1460-2695.2003.00470.x