Plasticity and cross‐tolerance to heterogeneous environments: divergent stress responses co‐evolved in an African fruit fly

Journal of Evolutionary Biology - Tập 31 Số 1 - Trang 98-110 - 2018
Nonofo Gotcha1, John S. Terblanche2, Casper Nyamukondiwa1
1Department of Biological Sciences and Biotechnology Sciences, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
2Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa

Tóm tắt

AbstractPlastic adjustments of physiological tolerance to a particular stressor can result in fitness benefits for resistance that might manifest not only in that same environment but also be advantageous when faced with alternative environmental stressors, a phenomenon termed ‘cross‐tolerance’. The nature and magnitude of cross‐tolerance responses can provide important insights into the underlying genetic architecture, potential constraints on or versatility of an organism's stress responses. In this study, we tested for cross‐tolerance to a suite of abiotic factors that likely contribute to setting insect population dynamics and geographic range limits: heat, cold, desiccation and starvation resistance in adult Ceratitis rosa following acclimation to all these isolated individual conditions prior to stress assays. Traits of stress resistance scored included critical thermal (activity) limits, chill coma recovery time (CCRT), heat knockdown time (HKDT), desiccation and starvation resistance. In agreement with other studies, we found that acclimation to one stress typically increased resistance for that same stress experienced later in life. A more novel outcome, however, is that here we also found substantial evidence for cross‐tolerance. For example, we found an improvement in heat tolerance (critical thermal maxima, CTmax) following starvation or desiccation hardening and improved desiccation resistance following cold acclimation, indicating pronounced cross‐tolerance to these environmental stressors for the traits examined. We also found that two different traits of the same stress resistance differed in their responsiveness to the same stress conditions (e.g. HKDT was less cross‐resistant than CTmax). The results of this study have two major implications that are of broader importance: (i) that these traits likely co‐evolved to cope with diverse or simultaneous stressors, and (ii) that a set of common underlying physiological mechanisms might exist between apparently divergent stress responses in this species. This species may prove to be a valuable model for future work on the evolutionary and mechanistic basis of cross‐tolerance.

Từ khóa


Tài liệu tham khảo

10.1111/1365-2656.12497

10.1111/1365-2435.12310

10.1093/acprof:oso/9780198570875.001.1

10.1111/phen.12068

10.1016/S0022-1910(01)00104-4

10.1016/j.jinsphys.2010.09.002

10.1016/j.cbpa.2008.12.009

10.1016/j.jinsphys.2009.09.012

10.1016/j.jinsphys.2015.09.001

10.1016/j.cois.2016.07.004

10.1111/j.1365-2435.2011.01928.x

10.1242/jeb.092502

10.1016/j.exger.2006.08.008

10.1016/j.jtherbio.2015.02.007

Chahal J., 2013, Starvation resistance in a stenothermal species from the Indian subcontinent: mechanistic basis of clinal variation, Evol. Biol., 40, 5, 10.1007/s11692-012-9170-y

10.1016/j.jinsphys.2010.09.013

10.1371/journal.pone.0169371

10.1093/acprof:oso/9780198515494.001.0001

10.1016/S0065-2806(06)33002-0

10.1111/j.1365-2435.2008.01481.x

10.1146/annurev-ento-010814-021017

10.1016/0022-1910(91)90026-V

De Meyer M., 2008, Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitate) and Natal fruit fly (Ceratitis rosa), J. Biogeogr., 35, 270, 10.1111/j.1365-2699.2007.01769.x

10.1017/CBO9780511675997

10.1086/515963

10.1111/j.1365-2656.2006.01072.x

10.1242/jeb.081141

10.1017/CBO9780511542022.008

Ghalambor C.K., 2007, Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments, Funct. Ecol., 21, 397, 10.1111/j.1365-2435.2007.01283.x

10.1242/jeb.200.12.1821

Goenaga J., 2011, The effect of mating on starvation resistance in natural populations of Drosophila melanogaster, Evol. Ecol., 26, 813, 10.1007/s10682-011-9540-4

10.1146/annurev-marine-122414-033953

10.1007/s12192-010-0223-9

10.1016/S0169-5347(99)01756-5

10.1111/jeb.12090

10.1023/A:1024197806855

10.1007/s10530-016-1078-5

10.1016/0022-1910(90)90176-G

10.1046/j.1365-2540.1999.00649.x

10.1046/j.1420-9101.1993.6050643.x

Hoffmann A.A., 2002, Evidence for a robust sex‐specific trade‐off between cold resistance and starvation resistance in Drosophila melanogaster, J. Evol. Biol., 18, 804, 10.1111/j.1420-9101.2004.00871.x

10.1016/S0306-4565(02)00057-8

10.1016/j.cbpc.2008.05.003

10.1016/S0022-1910(02)00175-0

10.1016/j.jinsphys.2009.02.002

10.1016/j.cbpa.2017.04.014

10.1016/j.cois.2016.07.001

10.1073/pnas.1207553109

10.1111/j.1558-5646.2012.01685.x

10.1371/journal.pone.0072072

10.1111/eva.12394

Kelty J.D., 2001, Rapid cold hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles, J. Exp. Biol., 204, 1659, 10.1242/jeb.204.9.1659

Khaliq A., 2014, Environmental effects on insects and their population dynamics, J. Entomol. Zool. Stud., 2, 1

10.1038/srep33667

10.2307/2390232

Kristensen T.N., 2012, Inconsistent effects of developmental temperature acclimation on low‐temperature performance and metabolism in Drosophila melanogaster, Evol. Ecol. Res., 14, 821

10.1016/j.jinsphys.2010.02.010

10.1128/MCB.18.1.30

10.1016/j.cois.2016.07.003

10.1007/s00360-008-0334-0

10.1016/j.jinsphys.2008.11.016

10.1016/j.cbpa.2017.06.019

10.1016/j.tplants.2005.11.002

10.1007/s12192-009-0150-9

10.1016/j.jtherbio.2009.09.002

10.1111/j.1365-2311.2010.01215.x

10.1111/j.1420-9101.2011.02324.x

10.1016/j.jinsphys.2013.09.004

10.1111/j.1365-2435.2009.01615.x

10.1016/j.cbpa.2013.12.007

10.1016/j.jinsphys.2008.04.008

Parkash R., 2013, Divergent strategies for adaptations to stress resistance in two tropical Drosophila species: effects of developmental acclimation for D. bipectinata and the invasive species – D. malerkotliana, J. Exp. Biol., 217, 924

10.1016/j.cbpa.2014.05.006

10.1111/j.1474-9726.2007.00322.x

Sairam R.K., 2000, Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes, Biologia, 43, 245, 10.1023/A:1002756311146

10.1007/s11692-014-9298-z

10.1111/eva.12116

10.1371/journal.pone.0130307

10.1007/s00360-005-0010-6

10.1111/j.1420-9101.2010.02110.x

10.1146/annurev-ento-010715-023859

10.1093/icb/icw005

10.1126/science.aag2349

10.1016/j.jtherbio.2014.07.007

10.1093/icb/ict004

10.1093/icb/ict028

10.1242/jeb.076356

10.1016/S0022-1910(99)00073-6

10.3897/zookeys.540.9906

10.1073/pnas.1218661109

10.1111/j.1420-9101.2009.01784.x

10.1098/rspb.2007.0985

Tomanek L., 2010, Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs, J. Evol. Biol., 213, 971

10.1016/bs.aecr.2016.08.003

10.1016/j.foreco.2015.11.045

10.1038/416389a

10.1111/j.1558-5646.1996.tb02359.x

10.1016/j.jtherbio.2011.08.005

10.1186/s12983-016-0147-z

10.1111/j.1365-2435.2007.01283.x

10.1111/brv.12105

10.1093/icb/icw013