Plasmonic Physics of 2D Crystalline Materials

Applied Sciences - Tập 8 Số 2 - Trang 238
Zahra Taheri1, Reza Asgari1,2
1School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
2School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran

Tóm tắt

Collective modes of doped two-dimensional crystalline materials, namely graphene, MoS 2 and phosphorene, both monolayer and bilayer structures, are explored using the density functional theory simulations together with the random phase approximation. The many-body dielectric functions of the materials are calculated using an ab initio based model involving material-realistic physical properties. Having calculated the electron energy-loss, we calculate the collective modes of each material considering the in-phase and out-of-phase modes for bilayer structures. Furthermore, owing to many band structures and intreband transitions, we also find high-energy excitations in the systems. We explain that the material-specific dielectric function considering the polarizability of the crystalline material such as MoS 2 are needed to obtain realistic plasmon dispersions. For each material studied here, we find different collective modes and describe their physical origins.

Từ khóa


Tài liệu tham khảo

Bohm, 1953, A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas, Phys. Rev., 92, 609, 10.1103/PhysRev.92.609

Landau, 1946, On the vibrations of the electronic plasma, J. Phys. (USSR), 10, 25

Ritchie, 1957, Plasma Losses by Fast Electrons in Thin Films, Phys. Rev., 106, 874, 10.1103/PhysRev.106.874

Koppens, 2011, Graphene Plasmonics: A Platform for Strong Light—Matter Interactions, Nano Lett., 11, 3370, 10.1021/nl201771h

Fer, 2012, Gate-tuning of graphene plasmons reveald by infrared nano-imaging, Nature, 487, 82, 10.1038/nature11253

Chen, 2012, Optical nano-imaging of gate-tunable graphene plasmons, Nature, 487, 77, 10.1038/nature11254

Lundeberg, 2017, Tuning quantum nonlocal effects in graphene plasmonics, Science, 357, 187, 10.1126/science.aan2735

Bostwick, 2010, Observation of Plasmarons in Quasi-Free-Standing Doped Graphene, Science, 328, 999, 10.1126/science.1186489

Kasry, 2012, Highly efficient fluorescence quenching with graphene, J. Phys. Chem. C, 116, 2858, 10.1021/jp207972f

Gaudreau, 2013, Universal distance-scaling of nonradiative enegy transfer to graphener, Nano Lett., 13, 2030, 10.1021/nl400176b

Principi, 2012, Plasmons and Coulomb Drag in Dirac/Schroedinger Hybrid Electron Systems, Phys. Rev. B, 86, 085421, 10.1103/PhysRevB.86.085421

Faridi, 2017, Plasmons at the LaAlO3/SrTiO3 interface and Graphene-LaAlO3/SrTiO3 double layer, Phys. Rev. B, 95, 165419, 10.1103/PhysRevB.95.165419

Loudon, 1970, The propagation of electromagnetic energy through an absorbing dielectric, J. Phys. A, 3, 233, 10.1088/0305-4470/3/3/008

Maier, S.A. (2007). Plasmonics: Fundamentals and Applications, Springer.

Wang, 2011, Foundations of Plasmonics, Adv. Phys., 60, 799, 10.1080/00018732.2011.621320

2014, Graphene Plasmonics: Challenges and Opportunities, ACS Photonics, 1, 135, 10.1021/ph400147y

Jablan, 2013, Plasmons in Graphene: Fundamental Properties and Potential Applications, Proc. IEEE, 101, 1689, 10.1109/JPROC.2013.2260115

Yan, 2013, Damping pathways of mid-infrared plasmons in graphene nanostructures, Nat. Photonics, 7, 394, 10.1038/nphoton.2013.57

Goncalves, P.A.D., and Peres, N.M.R. (2016). An Introduction to Graphene Plasmonics, World Scientific Publishing.

Tame, 2013, Quantum plasmonics, Nat. Phys., 9, 329, 10.1038/nphys2615

Sholl, D.S., and Steckel, J.A. (2009). Density Functional Theory: A Practical Introduction, Wiley-Interscience.

Parr, R.G., and Yang, W. (1989). Density-Functional Theory of Atoms and Molecules, Oxford.

Kohn, 1965, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133

Giannozzi, 2009, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 395502, 10.1088/0953-8984/21/39/395502

Troullier, 1991, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43, 1993, 10.1103/PhysRevB.43.1993

Vanderbilt, 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 7892, 10.1103/PhysRevB.41.7892

Moroni, 1997, Ultrasoft pseudopotentials applied to magnetic Fe, Co, and Ni: From atoms to solids, Phys. Rev. B, 56, 15629, 10.1103/PhysRevB.56.15629

Perdew, 1981, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 23, 5048, 10.1103/PhysRevB.23.5048

Chadi, 1973, Special Points in the Brillouin Zone, Phys. Rev. B, 8, 5747, 10.1103/PhysRevB.8.5747

Giuliani, G.F., and Vignale, G. (2005). Quantum Theory of the Electron Liquid, Cambridge University Press.

Adler, 1962, Quantum theory of the dielectric constant in real solids, Phys. Rev., 126, 413, 10.1103/PhysRev.126.413

Petersilka, 1996, Excitation energies from time-dependent density-functional theory, Phys. Rev. Lett., 76, 1212, 10.1103/PhysRevLett.76.1212

Pisarra, 2016, Dielectric screening and plasmon resonances in bilayer graphene, Phys. Rev. B, 93, 035440, 10.1103/PhysRevB.93.035440

Gomez, 2016, Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements, Phys. Rev. Lett, 117, 116801, 10.1103/PhysRevLett.117.116801

Kramberger, 2008, Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene, Phys. Rev. Lett, 100, 196803, 10.1103/PhysRevLett.100.196803

Rostami, 2012, Electronic ground-state properties of strained graphene, Phys. Rev. B, 86, 155435, 10.1103/PhysRevB.86.155435

Polini, 2008, Density functional theory of graphene sheets, Phys. Rev. B, 78, 115426, 10.1103/PhysRevB.78.115426

Neto, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109

Despoja, 2012, Ab initio study of energy loss and wake potential in the vicinity of a graphene monolayer, Phys. Rev. B, 86, 165419, 10.1103/PhysRevB.86.165419

Yan, 2011, Nonlocal Screening of Plasmons in Graphene by Semiconducting and Metallic Substrates: First-Principles Calculations, Phys. Rev. Lett., 106, 146803, 10.1103/PhysRevLett.106.146803

Wunsch, 2006, Dynamical polarization of graphene at finite doping, New J. Phys., 8, 318, 10.1088/1367-2630/8/12/318

Jablan, 2009, Plasmonics in graphene at infrared frequencies, Phys. Rev. B, 80, 245435, 10.1103/PhysRevB.80.245435

Wachsmuth, 2013, High-energy collective electronic excitations in free-standing single-layer graphene, Phys. Rev. B, 88, 075433, 10.1103/PhysRevB.88.075433

Gao, 2011, Anisotropic low-energy plasmon excitations in doped graphene: An ab initio study, Solid State Commun., 151, 1009, 10.1016/j.ssc.2011.05.001

Novko, 2015, Changing character of electronic transitions in graphene: From single-particle excitations to plasmons, Phys. Rev. B, 91, 195407, 10.1103/PhysRevB.91.195407

Stauber, 2014, Plasmonics in Dirac systems: From graphene to topological insulators, J. Phys. Condens. Matter, 26, 123201, 10.1088/0953-8984/26/12/123201

Li, 2017, First-principles calculations and model analysis of plasmon excitations in graphene and graphene/hBN heterostructure, Phys. Rev. B, 96, 165417, 10.1103/PhysRevB.96.165417

Eberlein, 2008, Plasmon spectroscopy of free-standing graphene films, Phys. Rev. B, 77, 233406, 10.1103/PhysRevB.77.233406

Despoja, 2013, Two-dimensional and π plasmon spectra in pristine and doped graphene, Phys. Rev. B, 87, 075447, 10.1103/PhysRevB.87.075447

McCann, 2013, The electronic properties of bilayer graphene, Rep. Prog. Phys., 76, 056503, 10.1088/0034-4885/76/5/056503

Min, 2007, Ab initio theory of gate induced gaps in graphene bilayers, Phys. Rev. B, 75, 155115, 10.1103/PhysRevB.75.155115

Ohta, 2006, Controlling the electronic structure of bilayer graphene, Science, 313, 951, 10.1126/science.1130681

Wachsmuth, 2014, Plasmon bands in multilayer graphene, Phys. Rev. B, 90, 235434, 10.1103/PhysRevB.90.235434

Borghi, 2009, Dynamical response functions and collective modes of bilayer graphene, Phys. Rev. B, 80, 241402, 10.1103/PhysRevB.80.241402

Profumo, 2012, Double-layer graphene and topological insulator thin-film plasmons, Phys. Rev. B, 85, 085443, 10.1103/PhysRevB.85.085443

Sarma, 1998, Plasmons in Coupled Bilayer Structures, Phys. Rev. Lett., 81, 4216, 10.1103/PhysRevLett.81.4216

McCann, 2006, Ab initio theory of gate induced gaps in graphene bilayers, Phys. Rev. B, 74, 161403, 10.1103/PhysRevB.74.161403

Guinea, 2005, Electronic states and Landau levels graphene stacks, Phys. Rev. B, 73, 245426, 10.1103/PhysRevB.73.245426

Zhang, 2009, Direct observation of a widely tunable bandgap in bilayer graphene, Nature, 11, 820, 10.1038/nature08105

Skakalova, V., and Kaiser, A.B. (2014). Graphene, Properties, Preparation, Characterisation and Devices, Woodhead Publishing of Elsevier.

Wang, 2010, Coulomb screening and collective excitations in biased bilayer graphene, Phys. Rev. B, 81, 081402, 10.1103/PhysRevB.81.081402

Bonaccorso, 2010, Graphene photonics and optoelectronics, Nat. Photonics, 4, 611, 10.1038/nphoton.2010.186

Rukelj, 2016, Optical absorption and transmission in a molybdenum disulfide monolayer, Phys. Rev. B, 94, 115428, 10.1103/PhysRevB.94.115428

Kadantsev, 2012, Electronic structure of a single MoS2 monolayer, Solid State Commun., 152, 909, 10.1016/j.ssc.2012.02.005

Kumara, 2012, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors, Eur. Phys. J. B, 85, 186, 10.1140/epjb/e2012-30070-x

Rostami, 2015, Theory of strain in single-layer transition metal dichalcogenides, Phys. Rev. B, 92, 195402, 10.1103/PhysRevB.92.195402

Rostami, 2015, Valley Zeeman effect and spin-valley polarized conductance in monolayer MoS2 in a perpendicular magnetic field, Phys. Rev. B, 91, 075433, 10.1103/PhysRevB.91.075433

Shishkin, 2007, Self-consistent GW calculations for semiconductors and insulators, Phys. Rev. B, 75, 235102, 10.1103/PhysRevB.75.235102

Qiu, 2013, Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States, Phys. Rev. Lett., 111, 216805, 10.1103/PhysRevLett.111.216805

Andersen, 2013, Plasmons in metallic monolayer and bilayer transition metal dichalcogenides, Phys. Rev. B, 88, 155128, 10.1103/PhysRevB.88.155128

Scholz, 2008, Plasmons and screening in a monolayer of MoS2, Phys. Rev. B, 88, 035135, 10.1103/PhysRevB.88.035135

Groenewald, 2016, Valley plasmonics in transition metal dichalcogenides, Phys. Rev. B, 93, 205145, 10.1103/PhysRevB.93.205145

Cudazzo, 2011, Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane, Phys. Rev. B, 84, 085406, 10.1103/PhysRevB.84.085406

Keldysh, 1979, Coulomb interaction in thin semiconductor and semimetal films, JETP Lett., 29, 658

Stauber, 2016, Orbital magnetic susceptibility of graphene and MoS2, Phys. Rev. B, 93, 085133, 10.1103/PhysRevB.93.085133

Rostami, 2015, Valley Zeeman effect and spin-valley polarized conductance in monolayer MoS2 in a perpendicular magnetic field, Phys. Rev. B, 91, 075433, 10.1103/PhysRevB.91.075433

Cheiwchanchamnangij, 2012, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2, Phys. Rev. B, 85, 205302, 10.1103/PhysRevB.85.205302

Debbichi, 2014, Electronic structure of two-dimensional transition metal dichalcogenide bilayers from ab initio theory, Phys. Rev. B, 89, 205311, 10.1103/PhysRevB.89.205311

Komsa, 2012, Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles, Phys. Rev. B, 86, 241201, 10.1103/PhysRevB.86.241201

Ramasubramaniam, 2011, Tunable band gaps in bilayer transition-metal dichalcogenides, Phys. Rev. B, 84, 205325, 10.1103/PhysRevB.84.205325

Torbatian, 2017, Plasmon modes of bilayer molybdenum disulfide: A density functional study, J. Phys. Condens. Matter, 29, 465701, 10.1088/1361-648X/aa86b9

Schwierz, 2010, Graphene transistors, Nat. Nanotech., 5, 487, 10.1038/nnano.2010.89

Mak, 2010, Atomically Thin MoS2: A New Direct-Gap Semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805

Zare, 2017, Thermoelectric transport in monolayer phosphorene, Phys. Rev. B, 95, 045422, 10.1103/PhysRevB.95.045422

Wang, 2015, Native point defects in few-layer phosphorene, Phys. Rev. B, 91, 045433, 10.1103/PhysRevB.91.045433

Perdew, 1996, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Elahi, 2015, Modulation of electronic and mechanical properties of phosphorene through strain, Phys. Rev. B, 91, 115412, 10.1103/PhysRevB.91.115412

Tran, 2014, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus, Phys. Rev. B, 89, 235319, 10.1103/PhysRevB.89.235319

Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279

Ganesan, 2016, Heterostructures of phosphorene and transition metal dichalcogenides for excitonic solar cells: A first-principles study, Appl. Phys. Lett., 108, 122105, 10.1063/1.4944642

Fei, 2014, Enhanced Thermoelectric Efficiency via Orthogonal Electrical and Thermal Conductances in Phosphorene, Nano Lett., 14, 6393, 10.1021/nl502865s

Ghosh, 2017, Anisotropic plasmons, excitons, and electron energy loss spectroscopy of phosphorene, Phys. Rev. B, 96, 035422, 10.1103/PhysRevB.96.035422

Jin, 2015, Screening and plasmons in pure and disordered single- and bilayer black phosphorus, Phys. Rev. B, 92, 115440, 10.1103/PhysRevB.92.115440

Low, 2014, Plasmons and Screening in Monolayer and Multilayer Black Phosphorus, Phys. Rev. Lett., 113, 106802, 10.1103/PhysRevLett.113.106802

Dai, 2014, Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells, J. Phys. Chem. Lett., 5, 1289, 10.1021/jz500409m

Jhun, 2017, Electronic structure of charged bilayer and trilayer phosphorene, Phys. Rev. B, 96, 085412, 10.1103/PhysRevB.96.085412

Qiao, 2014, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun., 5, 4475, 10.1038/ncomms5475

Jin, 2016, Highly anisotropic electronic transport properties of monolayer and bilayer phosphorene from first principles, Appl. Phys. Lett., 109, 053108, 10.1063/1.4960526

Caklr, 2015, Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus, Phys. Rev. B, 92, 165406, 10.1103/PhysRevB.92.165406

Torbatian, Z., and Asgari, R. Collective modes in few layer phosphorous. To be submitted 2018, In preparation.