Plasmonic Physics of 2D Crystalline Materials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bohm, 1953, A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas, Phys. Rev., 92, 609, 10.1103/PhysRev.92.609
Landau, 1946, On the vibrations of the electronic plasma, J. Phys. (USSR), 10, 25
Ritchie, 1957, Plasma Losses by Fast Electrons in Thin Films, Phys. Rev., 106, 874, 10.1103/PhysRev.106.874
Koppens, 2011, Graphene Plasmonics: A Platform for Strong Light—Matter Interactions, Nano Lett., 11, 3370, 10.1021/nl201771h
Fer, 2012, Gate-tuning of graphene plasmons reveald by infrared nano-imaging, Nature, 487, 82, 10.1038/nature11253
Chen, 2012, Optical nano-imaging of gate-tunable graphene plasmons, Nature, 487, 77, 10.1038/nature11254
Lundeberg, 2017, Tuning quantum nonlocal effects in graphene plasmonics, Science, 357, 187, 10.1126/science.aan2735
Bostwick, 2010, Observation of Plasmarons in Quasi-Free-Standing Doped Graphene, Science, 328, 999, 10.1126/science.1186489
Kasry, 2012, Highly efficient fluorescence quenching with graphene, J. Phys. Chem. C, 116, 2858, 10.1021/jp207972f
Gaudreau, 2013, Universal distance-scaling of nonradiative enegy transfer to graphener, Nano Lett., 13, 2030, 10.1021/nl400176b
Principi, 2012, Plasmons and Coulomb Drag in Dirac/Schroedinger Hybrid Electron Systems, Phys. Rev. B, 86, 085421, 10.1103/PhysRevB.86.085421
Faridi, 2017, Plasmons at the LaAlO3/SrTiO3 interface and Graphene-LaAlO3/SrTiO3 double layer, Phys. Rev. B, 95, 165419, 10.1103/PhysRevB.95.165419
Loudon, 1970, The propagation of electromagnetic energy through an absorbing dielectric, J. Phys. A, 3, 233, 10.1088/0305-4470/3/3/008
Jablan, 2013, Plasmons in Graphene: Fundamental Properties and Potential Applications, Proc. IEEE, 101, 1689, 10.1109/JPROC.2013.2260115
Yan, 2013, Damping pathways of mid-infrared plasmons in graphene nanostructures, Nat. Photonics, 7, 394, 10.1038/nphoton.2013.57
Goncalves, P.A.D., and Peres, N.M.R. (2016). An Introduction to Graphene Plasmonics, World Scientific Publishing.
Sholl, D.S., and Steckel, J.A. (2009). Density Functional Theory: A Practical Introduction, Wiley-Interscience.
Parr, R.G., and Yang, W. (1989). Density-Functional Theory of Atoms and Molecules, Oxford.
Kohn, 1965, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133
Giannozzi, 2009, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 395502, 10.1088/0953-8984/21/39/395502
Troullier, 1991, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43, 1993, 10.1103/PhysRevB.43.1993
Vanderbilt, 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 7892, 10.1103/PhysRevB.41.7892
Moroni, 1997, Ultrasoft pseudopotentials applied to magnetic Fe, Co, and Ni: From atoms to solids, Phys. Rev. B, 56, 15629, 10.1103/PhysRevB.56.15629
Perdew, 1981, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 23, 5048, 10.1103/PhysRevB.23.5048
Giuliani, G.F., and Vignale, G. (2005). Quantum Theory of the Electron Liquid, Cambridge University Press.
Adler, 1962, Quantum theory of the dielectric constant in real solids, Phys. Rev., 126, 413, 10.1103/PhysRev.126.413
Petersilka, 1996, Excitation energies from time-dependent density-functional theory, Phys. Rev. Lett., 76, 1212, 10.1103/PhysRevLett.76.1212
Pisarra, 2016, Dielectric screening and plasmon resonances in bilayer graphene, Phys. Rev. B, 93, 035440, 10.1103/PhysRevB.93.035440
Gomez, 2016, Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements, Phys. Rev. Lett, 117, 116801, 10.1103/PhysRevLett.117.116801
Kramberger, 2008, Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene, Phys. Rev. Lett, 100, 196803, 10.1103/PhysRevLett.100.196803
Rostami, 2012, Electronic ground-state properties of strained graphene, Phys. Rev. B, 86, 155435, 10.1103/PhysRevB.86.155435
Polini, 2008, Density functional theory of graphene sheets, Phys. Rev. B, 78, 115426, 10.1103/PhysRevB.78.115426
Neto, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109
Despoja, 2012, Ab initio study of energy loss and wake potential in the vicinity of a graphene monolayer, Phys. Rev. B, 86, 165419, 10.1103/PhysRevB.86.165419
Yan, 2011, Nonlocal Screening of Plasmons in Graphene by Semiconducting and Metallic Substrates: First-Principles Calculations, Phys. Rev. Lett., 106, 146803, 10.1103/PhysRevLett.106.146803
Wunsch, 2006, Dynamical polarization of graphene at finite doping, New J. Phys., 8, 318, 10.1088/1367-2630/8/12/318
Jablan, 2009, Plasmonics in graphene at infrared frequencies, Phys. Rev. B, 80, 245435, 10.1103/PhysRevB.80.245435
Wachsmuth, 2013, High-energy collective electronic excitations in free-standing single-layer graphene, Phys. Rev. B, 88, 075433, 10.1103/PhysRevB.88.075433
Gao, 2011, Anisotropic low-energy plasmon excitations in doped graphene: An ab initio study, Solid State Commun., 151, 1009, 10.1016/j.ssc.2011.05.001
Novko, 2015, Changing character of electronic transitions in graphene: From single-particle excitations to plasmons, Phys. Rev. B, 91, 195407, 10.1103/PhysRevB.91.195407
Stauber, 2014, Plasmonics in Dirac systems: From graphene to topological insulators, J. Phys. Condens. Matter, 26, 123201, 10.1088/0953-8984/26/12/123201
Li, 2017, First-principles calculations and model analysis of plasmon excitations in graphene and graphene/hBN heterostructure, Phys. Rev. B, 96, 165417, 10.1103/PhysRevB.96.165417
Eberlein, 2008, Plasmon spectroscopy of free-standing graphene films, Phys. Rev. B, 77, 233406, 10.1103/PhysRevB.77.233406
Despoja, 2013, Two-dimensional and π plasmon spectra in pristine and doped graphene, Phys. Rev. B, 87, 075447, 10.1103/PhysRevB.87.075447
McCann, 2013, The electronic properties of bilayer graphene, Rep. Prog. Phys., 76, 056503, 10.1088/0034-4885/76/5/056503
Min, 2007, Ab initio theory of gate induced gaps in graphene bilayers, Phys. Rev. B, 75, 155115, 10.1103/PhysRevB.75.155115
Ohta, 2006, Controlling the electronic structure of bilayer graphene, Science, 313, 951, 10.1126/science.1130681
Wachsmuth, 2014, Plasmon bands in multilayer graphene, Phys. Rev. B, 90, 235434, 10.1103/PhysRevB.90.235434
Borghi, 2009, Dynamical response functions and collective modes of bilayer graphene, Phys. Rev. B, 80, 241402, 10.1103/PhysRevB.80.241402
Profumo, 2012, Double-layer graphene and topological insulator thin-film plasmons, Phys. Rev. B, 85, 085443, 10.1103/PhysRevB.85.085443
Sarma, 1998, Plasmons in Coupled Bilayer Structures, Phys. Rev. Lett., 81, 4216, 10.1103/PhysRevLett.81.4216
McCann, 2006, Ab initio theory of gate induced gaps in graphene bilayers, Phys. Rev. B, 74, 161403, 10.1103/PhysRevB.74.161403
Guinea, 2005, Electronic states and Landau levels graphene stacks, Phys. Rev. B, 73, 245426, 10.1103/PhysRevB.73.245426
Zhang, 2009, Direct observation of a widely tunable bandgap in bilayer graphene, Nature, 11, 820, 10.1038/nature08105
Skakalova, V., and Kaiser, A.B. (2014). Graphene, Properties, Preparation, Characterisation and Devices, Woodhead Publishing of Elsevier.
Wang, 2010, Coulomb screening and collective excitations in biased bilayer graphene, Phys. Rev. B, 81, 081402, 10.1103/PhysRevB.81.081402
Bonaccorso, 2010, Graphene photonics and optoelectronics, Nat. Photonics, 4, 611, 10.1038/nphoton.2010.186
Rukelj, 2016, Optical absorption and transmission in a molybdenum disulfide monolayer, Phys. Rev. B, 94, 115428, 10.1103/PhysRevB.94.115428
Kadantsev, 2012, Electronic structure of a single MoS2 monolayer, Solid State Commun., 152, 909, 10.1016/j.ssc.2012.02.005
Kumara, 2012, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors, Eur. Phys. J. B, 85, 186, 10.1140/epjb/e2012-30070-x
Rostami, 2015, Theory of strain in single-layer transition metal dichalcogenides, Phys. Rev. B, 92, 195402, 10.1103/PhysRevB.92.195402
Rostami, 2015, Valley Zeeman effect and spin-valley polarized conductance in monolayer MoS2 in a perpendicular magnetic field, Phys. Rev. B, 91, 075433, 10.1103/PhysRevB.91.075433
Shishkin, 2007, Self-consistent GW calculations for semiconductors and insulators, Phys. Rev. B, 75, 235102, 10.1103/PhysRevB.75.235102
Qiu, 2013, Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States, Phys. Rev. Lett., 111, 216805, 10.1103/PhysRevLett.111.216805
Andersen, 2013, Plasmons in metallic monolayer and bilayer transition metal dichalcogenides, Phys. Rev. B, 88, 155128, 10.1103/PhysRevB.88.155128
Scholz, 2008, Plasmons and screening in a monolayer of MoS2, Phys. Rev. B, 88, 035135, 10.1103/PhysRevB.88.035135
Groenewald, 2016, Valley plasmonics in transition metal dichalcogenides, Phys. Rev. B, 93, 205145, 10.1103/PhysRevB.93.205145
Cudazzo, 2011, Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane, Phys. Rev. B, 84, 085406, 10.1103/PhysRevB.84.085406
Keldysh, 1979, Coulomb interaction in thin semiconductor and semimetal films, JETP Lett., 29, 658
Stauber, 2016, Orbital magnetic susceptibility of graphene and MoS2, Phys. Rev. B, 93, 085133, 10.1103/PhysRevB.93.085133
Rostami, 2015, Valley Zeeman effect and spin-valley polarized conductance in monolayer MoS2 in a perpendicular magnetic field, Phys. Rev. B, 91, 075433, 10.1103/PhysRevB.91.075433
Cheiwchanchamnangij, 2012, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2, Phys. Rev. B, 85, 205302, 10.1103/PhysRevB.85.205302
Debbichi, 2014, Electronic structure of two-dimensional transition metal dichalcogenide bilayers from ab initio theory, Phys. Rev. B, 89, 205311, 10.1103/PhysRevB.89.205311
Komsa, 2012, Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles, Phys. Rev. B, 86, 241201, 10.1103/PhysRevB.86.241201
Ramasubramaniam, 2011, Tunable band gaps in bilayer transition-metal dichalcogenides, Phys. Rev. B, 84, 205325, 10.1103/PhysRevB.84.205325
Torbatian, 2017, Plasmon modes of bilayer molybdenum disulfide: A density functional study, J. Phys. Condens. Matter, 29, 465701, 10.1088/1361-648X/aa86b9
Mak, 2010, Atomically Thin MoS2: A New Direct-Gap Semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805
Zare, 2017, Thermoelectric transport in monolayer phosphorene, Phys. Rev. B, 95, 045422, 10.1103/PhysRevB.95.045422
Wang, 2015, Native point defects in few-layer phosphorene, Phys. Rev. B, 91, 045433, 10.1103/PhysRevB.91.045433
Perdew, 1996, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Elahi, 2015, Modulation of electronic and mechanical properties of phosphorene through strain, Phys. Rev. B, 91, 115412, 10.1103/PhysRevB.91.115412
Tran, 2014, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus, Phys. Rev. B, 89, 235319, 10.1103/PhysRevB.89.235319
Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279
Ganesan, 2016, Heterostructures of phosphorene and transition metal dichalcogenides for excitonic solar cells: A first-principles study, Appl. Phys. Lett., 108, 122105, 10.1063/1.4944642
Fei, 2014, Enhanced Thermoelectric Efficiency via Orthogonal Electrical and Thermal Conductances in Phosphorene, Nano Lett., 14, 6393, 10.1021/nl502865s
Ghosh, 2017, Anisotropic plasmons, excitons, and electron energy loss spectroscopy of phosphorene, Phys. Rev. B, 96, 035422, 10.1103/PhysRevB.96.035422
Jin, 2015, Screening and plasmons in pure and disordered single- and bilayer black phosphorus, Phys. Rev. B, 92, 115440, 10.1103/PhysRevB.92.115440
Low, 2014, Plasmons and Screening in Monolayer and Multilayer Black Phosphorus, Phys. Rev. Lett., 113, 106802, 10.1103/PhysRevLett.113.106802
Dai, 2014, Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells, J. Phys. Chem. Lett., 5, 1289, 10.1021/jz500409m
Jhun, 2017, Electronic structure of charged bilayer and trilayer phosphorene, Phys. Rev. B, 96, 085412, 10.1103/PhysRevB.96.085412
Qiao, 2014, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun., 5, 4475, 10.1038/ncomms5475
Jin, 2016, Highly anisotropic electronic transport properties of monolayer and bilayer phosphorene from first principles, Appl. Phys. Lett., 109, 053108, 10.1063/1.4960526
Caklr, 2015, Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus, Phys. Rev. B, 92, 165406, 10.1103/PhysRevB.92.165406
Torbatian, Z., and Asgari, R. Collective modes in few layer phosphorous. To be submitted 2018, In preparation.