Plasmonic Nanogap‐Enhanced Raman Scattering Using a Resonant Nanodome Array

Small - Tập 8 Số 18 - Trang 2878-2885 - 2012
Hsin‐Yu Wu1, Charles J. Choi1, Brian T. Cunningham2,1
1Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801, USA
2Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, Illinois 61801, USA

Tóm tắt

AbstractThe optical properties and surface‐enhanced Raman scattering (SERS) of plasmonic nanodome array (PNA) substrates in air and aqueous solution are investigated. PNA substrates are inexpensively and uniformly fabricated with a hot spot density of 6.25 × 106 mm−2 using a large‐area nanoreplica moulding technique on a flexible plastic substrate. Both experimental measurement and numerical simulation results show that PNAs exhibit a radiative localized surface plasmon resonance (LSPR) due to dipolar coupling between neighboring nanodomes and a non‐radiative surface plasmon resonance (SPR) resulting from the periodic array structure. The high spatial localization of electromagnetic field within the ∼10 nm nanogap together with the spectral alignment between the LSPR and excited and scattered light results in a reliable and reproducible spatially averaged SERS enhancement factor (EF) of 8.51 × 107 for Au‐coated PNAs. The SERS enhancement is sufficient for a wide variety of biological and chemical sensing applications, including detection of common metabolites at physiologically relevant concentrations.

Từ khóa


Tài liệu tham khảo

10.1038/nnano.2006.93

10.1021/ja0680820

10.1038/83505

10.1146/annurev.physchem.58.032806.104607

10.1038/nphoton.2007.223

10.1038/nnano.2011.79

10.1038/nphoton.2011.56

10.1038/ncomms1480

10.1038/nature08364

10.1038/nmat2919

10.1364/OE.16.021793

10.1038/nmat2629

10.1146/annurev.anchem.1.031207.112814

10.1038/nmat2162

10.1126/science.275.5303.1102

10.1103/PhysRevLett.78.1667

10.1126/science.267.5204.1629

10.1063/1.1988980

10.1039/b708839f

10.1021/nn900812f

10.1021/nl904170g

10.1063/1.3555342

10.1021/nl080872f

10.1021/jp010657m

10.1021/jp013638l

10.1021/nl0806163

10.1364/OE.18.004184

10.1021/nn901826q

10.1021/nl1012085

10.1021/ja905910q

10.1002/adma.201000131

10.1002/smll.201001438

10.1088/0957-4484/21/41/415301

10.1021/nn200636t

10.1364/OE.19.026056

10.1021/ja0773610

10.1364/OE.8.000655

10.1016/S0030-4018(03)01357-9

10.1021/nl1008376

10.1063/1.1485731

10.1002/jrs.1376

10.1126/science.1159499

10.1021/ja200247x

10.1103/PhysRevB.65.075419

10.1364/OE.15.012230

10.1021/jp0687908

10.1021/nn101352h

10.1002/lsm.1058

10.3390/s30600160

10.1016/B978-0-08-054721-3.50037-X