Plasmon modes in BLG-GaAs Double-Layer Structures: Temperature Effects

Springer Science and Business Media LLC - Tập 205 - Trang 45-54 - 2021

Tóm tắt

We consider a double-layer structure consisting of a bilayer graphene sheet and a two-dimensional electron gas, isolated in a very thin GaAs quantum well. The collective excitations are determined from the zeroes of the dynamical dielectric function within the random-phase approximation, taking into account the temperature effects. Numerical calculations present that two plasmon modes exist in the system, similar to those in other double-layer structures. While the optical mode continues in the interband single-particle excitation area, the acoustic mode only crosses the intraband single-particle excitation boundary and disappears. Also, our investigations show that plasmon properties in the system are affected significantly by most of the chosen factors. Plasmon frequency increases as the separation increases while the increase in carrier density decreases noticeably these frequencies. Temperature affects plasmon characters similarly to but more weakly than that does in monolayer grapheme—two-dimensional electron gas double-layer structures. Finally, the temperature can increase the effects of some other parameters on plasmon properties of the system, so this factor should be taken into account in calculations to improve the model for better results.

Tài liệu tham khảo

E.H. Hwang, S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional grapheme. Phys. Rev. B 75, 205418 (2007) A.H. CastroNeto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009) D.S.L. Abergela, V. Apalkovb, J. Berashevicha, K. Zieglerc, T. Chakrabortya, Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261 (2010) S. Das Sarma, E.H. Hwang, E. Rossi, Theory of carrier transport in bilayer graphene. Phys. Rev. B 81, 161407 (2010) S. DasSarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83, 407 (2011) E. McCann, Electronic Properties of Monolayer and Bilayer Graphene, in Graphene Nanoelectrics. ed. by R. H (NanoScience and Technology Springer, Berlin, 2011) M. Koshino, T. Ando, Transport in Bilayer Graphene: Calculations within a self-consistent Born approximation. Phys. Rev. B 73, 245403 (2006) X.-F. Wang, T. Chakraborty, Coulomb screening and collective excitations in a graphene bilayer. Phys. Rev. B 75, 041404(R) (2007) A.K. Geim, A.H. MacDonald, Graphene: Exploring carbon flatland. Phys. Today 60, 35 (2007) A.K. Geim, K.S. Novoselov, The rise of graphene. Nature Mater. 6, 183 (2007) S.A. Maier, Plasmonics – Fundamentals and Applications (Springer, New York, 2007) L. Ju et al., Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630 (2011) S. A. Mikhailov, Physics and Applications of Graphene – Theory. Croatia: InTech, Janeza Trdine 9, 51000 Rijeka, 2011. A. Politano, A.R. Marino, V. Formoso, D. Farías, R. Miranda, G. Chiarello, Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111). Phys. Rev. B 84, 033401 (2011) A. Principi, M. Polini, G. Vignale, Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate. Solid State Commun 151, 1627 (2011) C.H. Gan, Analysis of surface plasmon excitation at terahertz frequencies withhighly-doped graphene sheets via attenuated total reflection. Appl. Phys. Lett 101, 111609 (2012) A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nature Photonics Rev Artic. 6, 749 (2012) H. Yan et al., Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330 (2012) J. Gosciniak, D.T.H. Tan, Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators. Nanotechnology 24, 185202 (2013) V. Ryzhii, M. Ryzhii, V. Mitin, M.S. Shur, A. Satou, T. Otsuji, Terahertz photomixing using plasma resonances in double-graphene layer structures. J. Appl. Phys. 113, 174506 (2013) V. Ryzhii, M. Ryzhii, V. Mitin, M.S. Shur, A. Satou, T. Otsuji, Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene-layer structure. Appl. Phys. Lett. 103, 163507 (2013) B. Sensale-Rodriguez, Graphene-insulator-graphene active plasmonic terahertz devices. Appl. Phys. Lett. 103, 123109 (2013) G.X. Ni et al., Fundamental limits of graphene plasmonics. Nature 557, 530 (2018) G. Li, V. Semenenko, V. Perebeinos, P.Q. Liu, multilayer graphene terahertz plasmonic structures for enhanced frequency tuning range. ACS Photonics 6(12), 3180 (2019) A. Politano, L. Viti, M.S. Vitiello, Optoelectronic devices, plasmonics and photonics with topological insulators. APL Mater. 5, 035504 (2017) A. Politano, G. Chiarello, Plasmon modes in graphene: status and prospect. Nanoscale 6, 10927 (2014) D. Elmaghraoui, A. Politano, S. Jaziri, Photothermal response of plasmonic nanofillers for membrane distillation. J. Chem. Phys. 152, 114102 (2020) A. Politano, G. Di-Profio, E. Fontananova, V. Sanna, A. Cupolillo, E. Curcio, Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes. Desalination 451, 192 (2019) A. Agarwal, M.S. Vitiello, L. Viti, A. Cupolillo, A. Politano, Plasmonics with two-dimensional semiconductors: from basic research to technological applications. Nanoscale 10, 8938 (2018) L. Viti et al., Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States. Nano Lett. 16, 80 (2016) M. Lv, S. Wan, Screening-induced transport at finite temperature in bilayer graphene. Phys. Rev. B 81, 195409 (2010) R. Sensarma, E.H. Hwang, S. DasSarma, Dynamic screening and low energy collective modes in bilayer graphene. Phys. Rev. B 82, 195428 (2011) M.R. Ramezanali, M.M. Vazifeh, R. Asgari, M. Polini, A.H. MacDonald, Finite-temperature screening and the specific heat of doped graphene sheets. J. Phys. A Math. Theor 42, 214015 (2009) T. Vazifehshenas, T. Amlaki, M. Farmanbar, F. Parhizgar, Temperature effect on plasmon dispersions in double-layer graphene systems. Phys. Lett. A 374(48), 4899–4903 (2010) D.V. Tuan, N.Q. Khanh, Plasmon modes of double-layer graphene at finite temperature. Phys. E. 54, 267–272 (2013) J.-J. Zhu, S.M. Badalyan, F.M. Peeters, Plasmonic excitations in Coulomb-coupled N-layer graphene structures. Phys. Rev. B 87, 085401 (2013) N.V. Men, N.Q. Khanh, D.T.K. Phuong, Plasmon modes in MLG-2DEG heterostructures: Temperature effects. Phys. Lett. A 183, 1364 (2019) N.V. Men, D.T.K. Phuong, Plasmon modes in graphene GaAs heterostructures at finite temperature. Int. J. Mod. Phys. B 33(16), 1950174 (2019) N.V. Men, N.Q. Khanh, D.T.K. Phuong, Plasmon modes in double-layer gapped graphene. Physica E 118, 113859 (2020) N.V. Men, N.Q. Khanh, D.T.K. Phuong, Collective excitations in spin-polarized bilayer graphene. J. Phys. Condens. Matter 33, 105301 (2021) D.K. Patel, S.S.Z. Ashraf, A.C. Sharma, Temperature dependent screened electronic transport in gapped graphene. Phys. Stat. Sol. B 252(8), 1817 (2015) D.K. Patel, S.S.Z. Ashraf, A.C. Sharma, Finite temperature dynamical polarization and plasmons in gapped graphene. Phys. Stat. Sol. B 252(2), 282 (2015) S.M. Badalyan, F.M. Peeters, Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures. Phys. Rev. B 85(19), 195444 (2012) N.V. Men, N.Q. Khanh, Plasmon modes in graphene–GaAs heterostructures. Phys. Lett. A 381(44), 3779–3784 (2017) N.Q. Khanh, N.V. Men, Plasmon modes in bilayer-monolayer graphene heterostructures. Phys. Status Solidi B 255(7), 1700656 (2018) N.V. Men, N.Q. Khanh, Plasmon modes in Dirac/Schrӧdinger hybrid electron systems including layer-thickness and exchange-correlation effects. Can. J. Phys. 96(6), 615–621 (2018) N.V. Men, D.T.K. Phuong, Plasmon modes in bilayer-graphene-GaAs heterostructures including layer-thickness and exchange-correlation effects. Int. J. Mod. Phys. B 32(23), 1850256 (2018) N.V. Men, N.Q. Khanh, D.T.K. Phuong, Plasmon modes in N-layer bilayer graphene structures. Solid State Commun. 298, 113647 (2019) D.T.K. Phuong, N.V. Men, Plasmon modes in 3-layer graphene structures: Inhomogeneity effects. Phys. Lett. A 383, 125971 (2019) N.V. Men, Plasmon modes in N-layer gapped graphene. Phys. B 578, 411876 (2020) N.V. Men, D.T.K. Phuong, Plasmon modes in double-layer gapped graphene at zero temperature. Phys. Lett. A 384, 126221 (2020) E.H. Hwang, S. DasSarma, Exotic plasmon modes of double layer graphene. Phys. Rev. B 80, 205405 (2009) K. Flensberg, B.Y.-K. Hu, Plasmon enhancement of Coulomb drag in double-quantum-well systems. Phys. Rev. B 52, 14796 (1995) A. Principi, M. Carrega, R. Asgari, V. Pellegrini, M. Polini, Plasmons and Coulomb drag in Dirac/Schroedinger hybrid electron systems. Phys. Rev. B 86, 085421 (2012) B. Scharf, A. Matos-Abiague, Coulomb drag between massless and massive fermions. Phys. Rev. B 86, 115425 (2012) A. Politano, G. Chiarello, Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices. Nanoscale 5, 8215 (2013) A. Cupolillo, A. Politano, N. Ligato, D.M. Cid-Perez, G. Chiarello, L.S. Caputi, Substrate-dependent plasmonic properties of supported graphene. Surf. Sci. 634, 76 (2015) N.V. Men, D.T.K. Phuong, Temperature effects on plasmon modes in double-bilayer graphene structures. Solid State Comm. 334–335, 114398 (2021)