Plasmon enhanced visible light photocatalytic activity in polymer-derived TiN/Si-O-C-N nanocomposites

Materials and Design - Tập 157 - Trang 87-96 - 2018
Eranezhuth Wasan Awin1, Abhijeet Lale2, K.C. Hari Kumar3, Umit B. Demirci4, Samuel Bernard2, Ravi Kumar3
1Laboratory for High Performance Ceramics, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras (IIT Madras), Chennai 600036, India
2Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France
3Laboratory for High Performance Ceramics, Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Madras (IIT Madras), Chennai, 600036, India
4IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Universite Montpellier, Place E. Bataillon, F-34095, Montpellier, France

Tài liệu tham khảo

Cheng, 2015, A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions, Adv. Mater., 27, 4616, 10.1002/adma.201501172 Burda, 2005 El-Sayed, 2001, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res., 34, 257, 10.1021/ar960016n Brus, 2008, Noble metal nanocrystals: plasmon electron transfer photochemistry and single molecule Raman spectroscopy, Acc. Chem. Res., 41, 1742, 10.1021/ar800121r Kelly, 2003, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B, 107, 668, 10.1021/jp026731y Bai, 2017, Morphology evolution of nanorods decorated on electrospun nanofibers and their applications in SERS and catalysis, Mater. Des., 135, 9, 10.1016/j.matdes.2017.09.010 Verma, 2018, Enhancement of plasmonic activity by Pt/Ag bimetallic nanocatalyst supported on mesoporous silica in the hydrogen production from hydrogen storage material, Appl. Catal. B Environ., 223, 10, 10.1016/j.apcatb.2017.05.017 Chang, 2016, Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts, Mater. Des., 98, 324, 10.1016/j.matdes.2016.03.027 Faisal, 2016, Synthesis of highly dispersed silver doped g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity, Mater. Des., 98, 223, 10.1016/j.matdes.2016.03.019 Lal, 2007, Nano-optics from sensing to waveguiding, Nat. Photonics, 1, 641, 10.1038/nphoton.2007.223 Hirsch, 2003, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci., 100, 13549, 10.1073/pnas.2232479100 Liao, 2006, Biomedical applications of plasmon resonant metal nanoparticles, Nanomedicine, 1, 201, 10.2217/17435889.1.2.201 Kale, 2014, Direct photocatalysis by plasmonic nanostructures, ACS Catal., 4, 116, 10.1021/cs400993w Clavero, 2014, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices, Nat. Photonics, 8, 95, 10.1038/nphoton.2013.238 Di, 2017, Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for rhodamine B decolorization, Materials (Basel), 10, 1118, 10.3390/ma10101118 Wang, 2018, Enhanced photocatalytic performance of CuBi2O4particles decorated with Ag nanowires, Mater. Sci. Semicond. Process., 73, 58, 10.1016/j.mssp.2017.09.029 Zhao, 2017, Enhanced photocatalytic performance of Ag–Bi4Ti3O12 nanocomposites prepared by a photocatalytic reduction method, Mater. Tech., 32, 870, 10.1080/10667857.2017.1371914 Guler, 2017, Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide, Adv. Opt. Mater., 5, 1600717, 10.1002/adom.201600717 Naldoni, 2017, Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride, Adv. Opt. Mater., 5, 1 Reddy, 2017, Temperature-dependent optical properties of plasmonic titanium nitride thin films, ACS Photonics, 4, 1413, 10.1021/acsphotonics.7b00127 Zhang, 2009, Photocatalytic activities of N-doped nano-titanias and titanium nitride, J. Eur. Ceram. Soc., 29, 2343, 10.1016/j.jeurceramsoc.2009.02.008 Pu, 2013, Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting, Nano Lett., 13, 3817, 10.1021/nl4018385 Link, 2000, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int. Rev. Phys. Chem., 19, 409, 10.1080/01442350050034180 Isozaki, 2010, Chemical coating of large-area Au nanoparticle two-dimensional arrays as plasmon-resonant optics, Appl. Phys. Lett., 97, 1, 10.1063/1.3518469 Jiang, 2016, Tuning plasmon resonance in depth-variant plasmonic nanostructures, Mater. Des., 96, 64, 10.1016/j.matdes.2016.02.005 Seh, 2012, Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation, Adv. Mater., 24, 2310, 10.1002/adma.201104241 Wang, 2015, Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites, Adv. Sci., 3, 1600024, 10.1002/advs.201600024 Colombo, 2010, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics, J. Am. Ceram. Soc., 93, 1805 Colombo, 2010 Mera, 2015, Ceramic nanocomposites from tailor-made preceramic polymers, Nano, 5, 468 Ionescu, 2012, Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties, Chem. Soc. Rev., 41, 5032, 10.1039/c2cs15319j Bechelany, 2014, In situ controlled growth of titanium nitride in amorphous silicon nitride: a general route toward bulk nitride nanocomposites with very high hardness, Adv. Mater., 26, 6548, 10.1002/adma.201402356 Lale, 2017, A comprehensive study on the influence of the polyorganosilazane chemistry and material shape on the high temperature behavior of titanium nitride/silicon nitride nanocomposites, J. Eur. Ceram. Soc., 37, 5167, 10.1016/j.jeurceramsoc.2017.04.001 Bechelany, 2017, Nanocomposites through the chemistry of single-source precursors: understanding the role of chemistry behind the design of monolith-type nanostructured titanium nitride/silicon nitride, Chem. Eur. J., 23, 832, 10.1002/chem.201603661 Riedel, 1992, Synthesis of dense silicon-based ceramics at low temperatures, Nature, 359, 150 Riedel, 1996, A silicoboron carbonitride ceramic stable to 2,000 °C, Nature, 382, 796, 10.1038/382796a0 Wang, 2006, Polymer-derived SiAlCN ceramics resist oxidation at 1400 °C, Scr. Mater., 55, 295, 10.1016/j.scriptamat.2006.05.004 An, 2004, Silicoaluminum carbonitride with anomalously high resistance to oxidation and hot corrosion, Adv. Eng. Mater., 6, 337, 10.1002/adem.200400010 Wang, 2006, Oxidation/corrosion of polymer-derived SiAlCN ceramics in water vapor, J. Am. Ceram. Soc., 89, 1079, 10.1111/j.1551-2916.2005.00791.x Nedunchezhian, 2013, Processing and characterization of polymer precursor derived silicon oxycarbide ceramic foams and compacts, J. Adv. Ceram., 2, 318, 10.1007/s40145-013-0078-5 Ionescu, 2012, Phase separation of a hafnium alkoxide-modified polysilazane upon polymer-to-ceramic transformation-a case study, J. Eur. Ceram. Soc., 32, 1873, 10.1016/j.jeurceramsoc.2011.09.003 Papendorf, 2011, Strong influence of polymer architecture on the microstructural evolution of hafnium-alkoxide-modified silazanes upon ceramization, Small, 7, 970, 10.1002/smll.201001938 Ishikawa, 1992, Production mechanism of polytitanocarbosilane and its conversion of the polymer into inorganic materials, J. Mater. Sci., 27, 6627, 10.1007/BF01165946 Yive, 1992, Thermogravimetric analysis/mass spectrometry investigation of the thermal conversion of organosilicon precursors into ceramics under argon and ammonia. 2. Poly(silazanes), Chem. Mater., 4, 1263, 10.1021/cm00024a028 Mutin, 1999, Control of the composition and structure of silicon oxycarbide and oxynitride glasses derived from polysiloxane precursors, J. Sol-Gel Sci. Technol., 14, 27, 10.1023/A:1008769913083 Li, 2011, Synthesis and polymer-to-ceramic conversion of tailorable copolysilazanes, J. Appl. Polym. Sci., 122, 1286, 10.1002/app.34274 Nguyen, 2015, N-doped polymer-derived Si(N)OC: the role of the N-containing precursor, J. Mater. Res., 30, 770, 10.1557/jmr.2015.44 Fan, 2013, 2361, 2358 Singh, 2005, Synthesis and characterisation of titanium and titanium nitride-functionalised MCM 41 materials, Solid State Sci., 7, 1104, 10.1016/j.solidstatesciences.2005.05.002 Spengler, 1976, First and second order Raman scattering in transition metal compounds, Solid State Commun., 18, 881, 10.1016/0038-1098(76)90228-3 Stoehr, 2011, J. Appl. Phys., 110, 0, 10.1063/1.3651381 Kress, 1978, Phonon anomalies in transition-metal nitrides: TiN, Phys. Rev. B, 17, 111, 10.1103/PhysRevB.17.111 Liao, 2007, Large-scale aligned silicon carbonitride nanotube arrays: synthesis, characterization, and field emission property, J. Appl. Phys., 101, 114306, 10.1063/1.2738378 Das, 2015, Si microstructures laminated with a nanolayer of TiO2 as long-term stable and effective photocathodes in PEC devices, Nanoscale, 7, 7726, 10.1039/C5NR00764J Onoprienko, 2011, Microstructure and mechanical properties of hard Ti–Si–C–N films deposited by dc magnetron sputtering of multicomponent Ti/C/Si target, Surf. Coat. Technol., 205, 5068, 10.1016/j.surfcoat.2011.05.009 Thärigen, 1999, XANES and XPS characterization of hard amorphous CSixNy thin films grown by RF nitrogen plasma assisted pulsed laser deposition, Fresenius J. Anal. Chem., 365, 244, 10.1007/s002160051481 Yoo, 2016, Titanium oxynitride microspheres with the rock-salt structure for use as visible-light photocatalysts, J. Mater. Chem. A, 0, 1 Saha, 1992, Titanium nitride oxidation spectroscopy study chemistry: an X-ray photoelectron, J. Appl. Phys., 72, 3072, 10.1063/1.351465 Reinholdt, 2004, Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles, Eur. Phys. J. D, 31, 69, 10.1140/epjd/e2004-00129-8 Ishii, 2016, Titanium nitride nanoparticles as plasmonic solar heat transducers, J. Phys. Chem. C, 120, 2343, 10.1021/acs.jpcc.5b09604 Zhou, 2011, Preparation of nitrogen doped TiO2 photocatalyst by oxidation of titanium nitride with H2O2, Mater. Res. Bull., 46, 840, 10.1016/j.materresbull.2011.02.029 Xiao, 2007, TiN film with (1 1 1) preferred orientation as a visible-light-driven photocatalyst for hydrogen evolution from water decomposition, Mater. Chem. Phys., 105, 6, 10.1016/j.matchemphys.2007.04.014 Li, 2016, In situ growth of TiO2 on TiN nanoparticles for non-noble-metal plasmonic photocatalysis, RSC Adv., 6, 72659, 10.1039/C6RA15435B