Plasmon enhanced visible light photocatalytic activity in polymer-derived TiN/Si-O-C-N nanocomposites
Tài liệu tham khảo
Cheng, 2015, A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions, Adv. Mater., 27, 4616, 10.1002/adma.201501172
Burda, 2005
El-Sayed, 2001, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res., 34, 257, 10.1021/ar960016n
Brus, 2008, Noble metal nanocrystals: plasmon electron transfer photochemistry and single molecule Raman spectroscopy, Acc. Chem. Res., 41, 1742, 10.1021/ar800121r
Kelly, 2003, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B, 107, 668, 10.1021/jp026731y
Bai, 2017, Morphology evolution of nanorods decorated on electrospun nanofibers and their applications in SERS and catalysis, Mater. Des., 135, 9, 10.1016/j.matdes.2017.09.010
Verma, 2018, Enhancement of plasmonic activity by Pt/Ag bimetallic nanocatalyst supported on mesoporous silica in the hydrogen production from hydrogen storage material, Appl. Catal. B Environ., 223, 10, 10.1016/j.apcatb.2017.05.017
Chang, 2016, Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts, Mater. Des., 98, 324, 10.1016/j.matdes.2016.03.027
Faisal, 2016, Synthesis of highly dispersed silver doped g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity, Mater. Des., 98, 223, 10.1016/j.matdes.2016.03.019
Lal, 2007, Nano-optics from sensing to waveguiding, Nat. Photonics, 1, 641, 10.1038/nphoton.2007.223
Hirsch, 2003, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci., 100, 13549, 10.1073/pnas.2232479100
Liao, 2006, Biomedical applications of plasmon resonant metal nanoparticles, Nanomedicine, 1, 201, 10.2217/17435889.1.2.201
Kale, 2014, Direct photocatalysis by plasmonic nanostructures, ACS Catal., 4, 116, 10.1021/cs400993w
Clavero, 2014, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices, Nat. Photonics, 8, 95, 10.1038/nphoton.2013.238
Di, 2017, Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for rhodamine B decolorization, Materials (Basel), 10, 1118, 10.3390/ma10101118
Wang, 2018, Enhanced photocatalytic performance of CuBi2O4particles decorated with Ag nanowires, Mater. Sci. Semicond. Process., 73, 58, 10.1016/j.mssp.2017.09.029
Zhao, 2017, Enhanced photocatalytic performance of Ag–Bi4Ti3O12 nanocomposites prepared by a photocatalytic reduction method, Mater. Tech., 32, 870, 10.1080/10667857.2017.1371914
Guler, 2017, Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide, Adv. Opt. Mater., 5, 1600717, 10.1002/adom.201600717
Naldoni, 2017, Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride, Adv. Opt. Mater., 5, 1
Reddy, 2017, Temperature-dependent optical properties of plasmonic titanium nitride thin films, ACS Photonics, 4, 1413, 10.1021/acsphotonics.7b00127
Zhang, 2009, Photocatalytic activities of N-doped nano-titanias and titanium nitride, J. Eur. Ceram. Soc., 29, 2343, 10.1016/j.jeurceramsoc.2009.02.008
Pu, 2013, Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting, Nano Lett., 13, 3817, 10.1021/nl4018385
Link, 2000, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int. Rev. Phys. Chem., 19, 409, 10.1080/01442350050034180
Isozaki, 2010, Chemical coating of large-area Au nanoparticle two-dimensional arrays as plasmon-resonant optics, Appl. Phys. Lett., 97, 1, 10.1063/1.3518469
Jiang, 2016, Tuning plasmon resonance in depth-variant plasmonic nanostructures, Mater. Des., 96, 64, 10.1016/j.matdes.2016.02.005
Seh, 2012, Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation, Adv. Mater., 24, 2310, 10.1002/adma.201104241
Wang, 2015, Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites, Adv. Sci., 3, 1600024, 10.1002/advs.201600024
Colombo, 2010, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics, J. Am. Ceram. Soc., 93, 1805
Colombo, 2010
Mera, 2015, Ceramic nanocomposites from tailor-made preceramic polymers, Nano, 5, 468
Ionescu, 2012, Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties, Chem. Soc. Rev., 41, 5032, 10.1039/c2cs15319j
Bechelany, 2014, In situ controlled growth of titanium nitride in amorphous silicon nitride: a general route toward bulk nitride nanocomposites with very high hardness, Adv. Mater., 26, 6548, 10.1002/adma.201402356
Lale, 2017, A comprehensive study on the influence of the polyorganosilazane chemistry and material shape on the high temperature behavior of titanium nitride/silicon nitride nanocomposites, J. Eur. Ceram. Soc., 37, 5167, 10.1016/j.jeurceramsoc.2017.04.001
Bechelany, 2017, Nanocomposites through the chemistry of single-source precursors: understanding the role of chemistry behind the design of monolith-type nanostructured titanium nitride/silicon nitride, Chem. Eur. J., 23, 832, 10.1002/chem.201603661
Riedel, 1992, Synthesis of dense silicon-based ceramics at low temperatures, Nature, 359, 150
Riedel, 1996, A silicoboron carbonitride ceramic stable to 2,000 °C, Nature, 382, 796, 10.1038/382796a0
Wang, 2006, Polymer-derived SiAlCN ceramics resist oxidation at 1400 °C, Scr. Mater., 55, 295, 10.1016/j.scriptamat.2006.05.004
An, 2004, Silicoaluminum carbonitride with anomalously high resistance to oxidation and hot corrosion, Adv. Eng. Mater., 6, 337, 10.1002/adem.200400010
Wang, 2006, Oxidation/corrosion of polymer-derived SiAlCN ceramics in water vapor, J. Am. Ceram. Soc., 89, 1079, 10.1111/j.1551-2916.2005.00791.x
Nedunchezhian, 2013, Processing and characterization of polymer precursor derived silicon oxycarbide ceramic foams and compacts, J. Adv. Ceram., 2, 318, 10.1007/s40145-013-0078-5
Ionescu, 2012, Phase separation of a hafnium alkoxide-modified polysilazane upon polymer-to-ceramic transformation-a case study, J. Eur. Ceram. Soc., 32, 1873, 10.1016/j.jeurceramsoc.2011.09.003
Papendorf, 2011, Strong influence of polymer architecture on the microstructural evolution of hafnium-alkoxide-modified silazanes upon ceramization, Small, 7, 970, 10.1002/smll.201001938
Ishikawa, 1992, Production mechanism of polytitanocarbosilane and its conversion of the polymer into inorganic materials, J. Mater. Sci., 27, 6627, 10.1007/BF01165946
Yive, 1992, Thermogravimetric analysis/mass spectrometry investigation of the thermal conversion of organosilicon precursors into ceramics under argon and ammonia. 2. Poly(silazanes), Chem. Mater., 4, 1263, 10.1021/cm00024a028
Mutin, 1999, Control of the composition and structure of silicon oxycarbide and oxynitride glasses derived from polysiloxane precursors, J. Sol-Gel Sci. Technol., 14, 27, 10.1023/A:1008769913083
Li, 2011, Synthesis and polymer-to-ceramic conversion of tailorable copolysilazanes, J. Appl. Polym. Sci., 122, 1286, 10.1002/app.34274
Nguyen, 2015, N-doped polymer-derived Si(N)OC: the role of the N-containing precursor, J. Mater. Res., 30, 770, 10.1557/jmr.2015.44
Fan, 2013, 2361, 2358
Singh, 2005, Synthesis and characterisation of titanium and titanium nitride-functionalised MCM 41 materials, Solid State Sci., 7, 1104, 10.1016/j.solidstatesciences.2005.05.002
Spengler, 1976, First and second order Raman scattering in transition metal compounds, Solid State Commun., 18, 881, 10.1016/0038-1098(76)90228-3
Stoehr, 2011, J. Appl. Phys., 110, 0, 10.1063/1.3651381
Kress, 1978, Phonon anomalies in transition-metal nitrides: TiN, Phys. Rev. B, 17, 111, 10.1103/PhysRevB.17.111
Liao, 2007, Large-scale aligned silicon carbonitride nanotube arrays: synthesis, characterization, and field emission property, J. Appl. Phys., 101, 114306, 10.1063/1.2738378
Das, 2015, Si microstructures laminated with a nanolayer of TiO2 as long-term stable and effective photocathodes in PEC devices, Nanoscale, 7, 7726, 10.1039/C5NR00764J
Onoprienko, 2011, Microstructure and mechanical properties of hard Ti–Si–C–N films deposited by dc magnetron sputtering of multicomponent Ti/C/Si target, Surf. Coat. Technol., 205, 5068, 10.1016/j.surfcoat.2011.05.009
Thärigen, 1999, XANES and XPS characterization of hard amorphous CSixNy thin films grown by RF nitrogen plasma assisted pulsed laser deposition, Fresenius J. Anal. Chem., 365, 244, 10.1007/s002160051481
Yoo, 2016, Titanium oxynitride microspheres with the rock-salt structure for use as visible-light photocatalysts, J. Mater. Chem. A, 0, 1
Saha, 1992, Titanium nitride oxidation spectroscopy study chemistry: an X-ray photoelectron, J. Appl. Phys., 72, 3072, 10.1063/1.351465
Reinholdt, 2004, Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles, Eur. Phys. J. D, 31, 69, 10.1140/epjd/e2004-00129-8
Ishii, 2016, Titanium nitride nanoparticles as plasmonic solar heat transducers, J. Phys. Chem. C, 120, 2343, 10.1021/acs.jpcc.5b09604
Zhou, 2011, Preparation of nitrogen doped TiO2 photocatalyst by oxidation of titanium nitride with H2O2, Mater. Res. Bull., 46, 840, 10.1016/j.materresbull.2011.02.029
Xiao, 2007, TiN film with (1 1 1) preferred orientation as a visible-light-driven photocatalyst for hydrogen evolution from water decomposition, Mater. Chem. Phys., 105, 6, 10.1016/j.matchemphys.2007.04.014
Li, 2016, In situ growth of TiO2 on TiN nanoparticles for non-noble-metal plasmonic photocatalysis, RSC Adv., 6, 72659, 10.1039/C6RA15435B