Plasmon based super resolution imaging for single molecular detection: Breaking the diffraction limit

Springer Science and Business Media LLC - Tập 4 - Trang 231-238 - 2014
Jong-ryul Choi1, Seunghun Lee2, Kyujung Kim2
1Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMF), Daegu, Korea
2Department of Nanofusion Engineering, Pusan National University, Miryang, Korea

Tóm tắt

Developments of super-resolution imaging techniques have considerable interests to detect and image tiny molecular events under a diffraction limit. Stimulated emission and depletion (STED) microscopy, photo-activated light microscopy (PALM) and structured illumination microscopy (SIM) are representative successful novel imaging techniques. Recently, surface plasmons (SP) based super resolution imaging techniques which can achieve super resolution with no deviation from conventional microscopic schematics have been actively investigated. In this paper, we explain the principle of SP phenomena which can apply for bioimaging, and introduce localized SP based super resolution imaging techniques to increase lateral and axial resolution below the diffraction limits. Three different novel techniques based on field localization are introduced to increase lateral resolution. Also, additional three imaging techniques based on extraordinary transmission and Förster resonance energy transfer are introduced to increase axial resolution. Consequently, we explore a future direction of SP based imaging researches for 3D spatiotemporal super resolution microscopy.

Tài liệu tham khảo

Drews J. Drug discovery: a historical perspective. Science. 2000; 287(5460):1960–4. Aiken CT, Tobin AJ, Schweitzer ES. A cell-based screen for drugs to treat Huntington’s disease. Neurobiol Dis. 2004; 16(3):546–55. Betz WJ, Mao F, Smith CB. Imaging exocytosis and endocytosis. Curr Opin Neurobiol. 1996; 6(3):365–71. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006; 313(5793):1642–5. Chen J, Dalal RV, Petrov AN, Tsai A, O’Leary SE, Chapin K, Cheng J, Ewan M, Hsiung PL, Lundquist P, Turner SW, Hsu DR, Puglisi JD. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proc Natl Acad Sci USA. 2014; 111(2):664–9. Lipson SG, Lipson H, Tannhauser DS. Optical physics. 3rd ed. New York: Cambridge University Press; 1995. Hell SW. Far-field optical nanoscopy. Science. 2007; 316(5828): 1153–8. Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW. STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics. 2009; 3:144–7. Gould TJ, Verkhusha VV, Hess ST. Imaging biological structures with fluorescence photoactivation localization microscopy. Nat Protoc. 2009; 4(3):291–308. Gustafsson MGL. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA. 2005; 102(37):13081–6. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW. Subdiffration multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science. 2008; 320(5881):1332–6. Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic. 2001; 2(11):764–74. Mattheyses AL, Simon SM, Rappoport JZ. Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci. 2010; 123(Pt 21):3621–8. Swoger J, Pampalnoi F, Stelzer EH. Light-sheet-based fluorescence microscopy for three-dimensional imaging of biological smaples. Cold Spring Harb Protoc. 2014; 2014(1):1–8. Hu YS, Zimmerley M, Li Y, Watters R, Cang H. Singlemolecule super-resolution light-sheet microscopy. Chemphyschem. 2014; 15(4):577–86. Weber M, Mickoleit M, Huisken J. Light sheet microscopy. Methods Cell Biol. 2014; 123:193–215. Donoghue PC, Bengtson S, Dong XP, Gostling NJ, Huldtgren T, Cunningham JA, Yin C, Yue Z, Peng F, Stampanoni M. Synchrotron X-ray tomographic microscopy of fossil embryos. Nature. 2006; 442(7103):680–3. Zhang T, Morgan H, Curtis ASG, Riehle M. Measuring particlesubstrate distance with surface plasmon resonance microscopy. J Opt A: Pure Appl Opt. 2001; 3(5):333–7. Wood RW. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc Phys Soc London. 1902; doi:10.1088/1478-7814/18/1/325. Rayleigh L. On the dynamical theory of gratings. Proc R Soc Lond A Math Phys Sci. 1907; 79(532):399–416. Pockrand I, Swalen JD, Gordon JG, Philpott MR. Surface plasmon spectroscopy of organic monolayer assemblies. Surf Sci. 1978; 74(1):237–44. Liedberg B, Nylander C, Lunstr I. Surface plasmon resonance for gas detection and biosensing. Sensor Actuator. 1983; 4:299–304. Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem. 2003; 377(3):528–39. Steiner G. Surface plasmon resonance imaging. Anal Bioanal Chem. 2004; 379(3):328–31. Scarano S, Mascini M, Turner AP, Minunni M. Surface plasmon resonance imaging for affinitybased biosensors. Biosens Bioelectron. 2010; 25(5):957–66. Ambrose EJ. A surface contact microscope for the study of cell movements. Nature. 1956; doi:10.1038/1781194a0. Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K. JNK phosphorylates paxillin and regulates cell migration. Nature. 2003; 424(6945):219–23. Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J. 2007; 92(8):2964–74. Bullen A. Microscopic imaging techniques for drug discovery. Nat Rev Drug Discov. 2008; 7(1):54–67. Harris HJ, Clerte C, Farguhar MJ, Goodall M, Hu K, Rassam P, Dosset P, Wilson GK, Balfe P, Ijzendoorn SC, Milhiet PE, McKeating JA. Hepatoma polarization limits CD81 and hepatitis C virus dynamics. Cell Microbiol. 2013; 15(3):430–45. Kaksonen M, Toret CP, Drubin DG. A modular design for the clathrin-and actin mediated endocytosis machinery. Cell. 2005; 123(2):305–20. Toshima JY, Toshima J, Kaksonen M, Martin AC, King DS, Drubin DG. Spatial dynamics of receptor-mediated endocytic trafficking in budding yeast revealed by using fluorescent alphafactor derivatives. Proc Natl Acad Sci USA. 2006; 103(15): 5793–8. Zeng S, Baillargeat D, Ho HP, Yong KT. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev. 2014; 43(10):3426–52. Tang WT, Chung E, Kim YH, So PT, Sheppard CJ. Investigation of the point spread function of surface plasmon-coupled emission microscopy. Opt Express. 2007; 15(8):4634–46. He RY, Chang GL, Wu HL, Lin CH, Chiu KC, Su YD, Chen SJ. Enhanced live cell membrane imaging using surface plasmonenhanced total internal reflection fluorescence microscopy. Opt Express. 2006; 14(20):9307–16. Balaa K, Devauges V, Goulam Y, Studer V, Lévêque-Fort S, Fort E. Live cell imaging with surface plasmon-mediated fluorescence microscopy. Proc SPIE. 2009; 7367:736710. Kim K, Cho E-J, Huh Y-M, Kim D. Thin-film-based sensitivity enhancement for total internal reflection fluorescence live-cell imaging. Opt Lett. 2007; 32(21):3062–4. Petryayeva E, Krull UJ. Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta. 2011; 706(1):8–24. Kim K, Choi JW, Ma K, Lee R, Yoo KH, Yun CO, Kim D. Nanoislands-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus. Small. 2010; 6(12):1293–9. Kim K, Yajima J, Oh Y, Lee W, Oowada S, Nishizaka T, Kim D. Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules. Small. 2012; 8(6):892–900. Kim K, Oh Y, Lee W, Kim D. Plasmonics-based spatially activated light microscopy for superresolution imaging of molecular fluorescence. Opt Lett. 2010; 35(20):3501–3. Olveczky BP, Periasamy N, Verkman AS. Mapping fluorophore distributions in three dimensions by quantitative multiple angletotal internal reflection fluorescence microscopy. Biophys J. 1997; 73(5):2836–47. Shen H, Huang E, Das T, Xu H, Ellisman M, Liu Z. TIRF microscopy with ultra-short penetration depth. Opt Express. 2014; 22(9):10728–34. Yin L, Vlasko-Vlasov VK, Rydh A, Pearson J, Welp U, Chang SH, Gray SK, Schatz GC, Brown DB, Kimball CW. Surface plasmons at single nanoholes in Au films. Appl Phys Lett. 2004; 85(3):467–9. Chang SH, Gray SK, Schatz GC. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express. 2005; 13(8):3150–65. Braun J, Gompf B, Weiss T, Giessen H, Dressel M, Hübner U. Optical transmission through subwavelength hole arrays in ultrathin metal films. Phys Rev B. 2011; doi:http://dx.doi.org/10.1103/PhysRevB.84.155419. Gordon R, Sinton D, Kavanagh KL, Brolo AG. A new generation of sensors based on extraordinary optical transmission. Acc Chem Res. 2008; 41(8):1049–57. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003; 424(6950):824–30. Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW. Beaming light from a subwavelength aperture. Science. 2002; 297(5582):820–2. Choi J, Kim K, Oh Y, Kim AL, Kim SY, Shin J-S, Kim D. Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging. Adv Opt Mater. 2014; 2(1):48–55. Clegg RM. Fluorescence resonance energy transfer. Curr Opin Biotechnol. 1995; 6(1):103–10. Zheng J. Spectroscopy-based quantitative fluorescence resonance energy transfer analysis. Methods Mol Biol. 2006; 337:65–77. Chizhik AI, Rother J, Gregor I, Janshoff A, Enderlein J. Metalinduced energy transfer for live cell nanoscopy. Nat Photonics. 2014; 8:124–7. Elsayad K, Urich A, Tan PS, Nemethova M, Small JV, Unterrainer K, Heinze KG. Spectrally coded optical nanosectioning (SpecON) with biocompatible metal-dielectric-coated substrates. Proc Natl Acad Sci USA. 2013; 110(50):20069–74. Zhang H, Zhao M, Peng L. Nonlinear structured illumination microscopy by surface plasmon enhanced stimulated emission depletion. Opt Express. 2011; 19(24):24783–94. Zong W, Huang X, Zhang C, Yuan T, Zhu LL, Fan M, Chen L. Shadowless-illuminated variable-angle TIRF (siva-TIRF) microscopy for the observation of spatial-temporal dynamics in live cells. Biomed Opt Express. 2014; 5(5):1530–40.