Plasma sphingolipids and risk of cardiovascular diseases: a large-scale lipidomic analysis

Metabolomics - Tập 16 - Trang 1-12 - 2020
Jowy Yi Hoong Seah1,2, Wee Siong Chew3, Federico Torta4,5, Chin Meng Khoo6, Markus R. Wenk4,5,7, Deron R. Herr3,8, Hyungwon Choi1,6,9, E. Shyong Tai1,6,10, Rob M. van Dam1,2,11
1Saw Swee Hock School of Public Health, National University of Singapore (NUS), Singapore, Singapore
2NUS Graduate School for Integrative Sciences and Engineering, NUS, Singapore, Singapore
3Department of Pharmacology, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
4Department of Biochemistry, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
5Singapore Lipidomics Incubator, Life Sciences Institute, NUS, Singapore, Singapore
6Department of Medicine, Yong Loo Lin School of Medicine, NUS and National University Health System, Singapore, Singapore
7Department of Biological Sciences, Faculty of Science, NUS, Singapore, Singapore
8Department of Biology, San Diego State University, San Diego, USA
9Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
10Duke-NUS Graduate Medical School, Singapore, Singapore
11Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA

Tóm tắt

Sphingolipids are a diverse class of lipids with various roles in cell functions and subclasses such as ceramides have been associated with cardiovascular diseases (CVD) in previous studies. We aimed to measure molecularly-distinct sphingolipids via a large-scale lipidomic analysis and expand the literature to an Asian population. We performed a lipidomics evaluation of 79 molecularly distinct sphingolipids in the plasma of 2627 ethnically-Chinese Singaporeans. During a mean follow-up of 12.9 years, we documented 152 cases of major CVD (non-fatal myocardial infarction, stroke and cardiovascular death). Total ceramide concentrations were not associated with CVD risk [hazard ratio (HR), 0.99; 95% CI 0.81–1.21], but higher circulating total monohexosylceramides (HR, 1.22; 95% CI 1.03, 1.45), total long-chain sphingolipids (C16–C18) (HR, 1.22; 95% CI 1.02, 1.45) and total 18:1 sphingolipids (HR, 1.21; 95% CI 1.01, 1.46) were associated with higher CVD risk after adjusting for conventional CVD risk factors. Our results do not support the hypothesis that higher ceramide concentrations are linked to higher CVD risk, but suggest that other classes of sphingolipids may affect CVD risk.

Tài liệu tham khảo

Baranowski, M., & Górski, J. (2011). Heart sphingolipids in health and disease. Advances in Experimental Medicine and Biology, 721, 41–56. Begum, H., Li, B. W., Shui, G. H., Cazenave-Gassiot, A., Soong, R., Ong, R. T. H., et al. (2016). Discovering and validating between-subject variations in plasma lipids in healthy subjects. Scientific Reports. https://doi.org/10.1038/srep19139. Bellis, C., Kulkarni, H., Mamtani, M., Kent, J. W., Wong, G., Weir, J. M., et al. (2014). Human plasma lipidome is pleiotropically associated with cardiovascular risk factors and death. Circulation-Cardiovascular Genetics, 7, 854–863. Bojic, L. A., McLaren, D. G., Shah, V., Previs, S. F., Johns, D. G., & Castro-Perez, J. M. (2014). Lipidome of atherosclerotic plaques from hypercholesterolemic rabbits. International Journal of Molecular Sciences, 15, 23283–23293. Borodzicz, S., Czarzasta, K., Kuch, M., & Cudnoch-Jedrzejewska, A. (2015). Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids in Health and Disease. https://doi.org/10.1186/s12944-015-0053-y. Brunius, C., Shi, L., & Landberg, R. (2016). Large-scale untargeted LC-MS metabolomics data correction using between-batch feature alignment and cluster-based within-batch signal intensity drift correction. Metabolomics. https://doi.org/10.1007/s11306-016-1124-4. Burla, B., Muralidharan, S., Wenk, M. R., & Torta, F. (2018). Sphingolipid analysis in clinical research. Methods in Molecular Biology, 1730, 135–162. Chatterjee, S., Bedja, D., Mishra, S., Amuzie, C., Avolio, A., Kass, D. A., et al. (2014). Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/- mice and rabbits fed a high-fat and -cholesterol diet. Circulation, 129, 2403–2413. Chew, W. S., Seow, W. L., Chong, J. R., Lai, M. K. P., Torta, F., Wenk, M. R., et al. (2018). Sphingolipidomics analysis of large clinical cohorts. Part 1: Technical notes and practical considerations. Biochemical and Biophysical Research Communications, 504, 596–601. Chew, W. S., Torta, F., Ji, S. S., Choi, H., Begum, H., Sim, X., et al. (2019). Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence. Jci Insight. https://doi.org/10.1172/jci.insight.126925. Dong, J. B., Liu, J., Lou, B., Li, Z. Q., Ye, X., Wu, M. P., et al. (2006). Adenovirus-mediated overexpression of sphingomyelin synthases 1 and 2 increases the atherogenic potential in mice. Journal of Lipid Research, 47, 1307–1314. Gault, C. R., Obeid, L. M., & Hannun, Y. A. (2010). An overview of sphingolipid metabolism: from synthesis to breakdown. In C. Chalfant & M. DelPoeta (Eds.), Sphingolipids as signaling and regulatory molecules (pp. 1–23). Berlin: Springer. Grosch, S., Schiffmann, S., & Geisslinger, G. (2012). Chain length-specific properties of ceramides. Progress in Lipid Research, 51, 50–62. Hanada, K. (2003). Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 1632, 16–30. Hannun, Y. A., & Obeid, L. M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nature Reviews Molecular Cell Biology, 9, 139–150. Hornemann, T., Penno, A., Rutti, M. F., Ernst, D., Kivrak-Pfiffner, F., Rohrer, L., et al. (2009). The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases. Journal of Biological Chemistry, 284, 26322–26330. Iqbal, J., Walsh, M. T., Hammad, S. M., & Hussain, M. M. (2017). Sphingolipids and lipoproteins in health and metabolic disorders. Trends in Endocrinology and Metabolism, 28, 506–518. Jiang, X. C., Goldberg, I. J., & Park, T. S. (2011). Sphingolipids and cardiovascular diseases: Lipoprotein metabolism, atherosclerosis and cardiomyopathy. Advances in Experimental Medicine and Biology, 721, 19–39. Kathiresan, S., Melander, O., Guiducci, C., Surti, A., Burtt, N. P., Rieder, M. J., et al. (2008). Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nature Genetics, 40, 189–197. Kikas, P., Chalikias, G., & Tziakas, D. (2018). Cardiovascular implications of sphingomyelin presence in biological membranes. European Cardiology Review, 13, 42–45. Kim, M. Y., Linardic, C., Obeid, L., & Hannun, Y. (1991). Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. Journal of Biological Chemistry, 266, 484–489. Kimura, T., Sato, K., Malchinkhuu, E., Tomura, H., Tamama, K., Kuwabara, A., et al. (2003). High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. Arteriosclerosis Thrombosis and Vascular Biology, 23, 1283–1288. Kitatani, K., Idkowiak-Baldys, J., & Hannun, Y. A. (2008). The sphingolipid salvage pathway in ceramide metabolism and signaling. Cellular Signalling, 20, 1010–1018. Kurek, K., Piotrowska, D. M., Wiesiolek-Kurek, P., Chabowska, A., Lukaszuk, B., & Zendzian-Piotrowska, M. (2013). The role of sphingolipids in selected cardiovascular diseases. Postepy Higieny I Medycyny Doswiadczalnej, 67, 1018–1026. Laaksonen, R., Ekroos, K., Sysi-Aho, M., Hilvo, M., Vihervaara, T., Kauhanen, D., et al. (2016). Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. European Heart Journal, 37, 1967–1976. Lemaitre, R. N., Jensen, P. N., Hoofnagle, A., McKnight, B., Fretts, A. M., King, I. B., et al. (2019). Plasma ceramides and sphingomyelins in relation to heart failure risk the cardiovascular health study. Circulation-Heart Failure. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005708. Li, Z. Q., Fan, Y. F., Liu, J., Li, Y., Huan, C. M., Bui, H. H., et al. (2012). Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arteriosclerosis Thrombosis and Vascular Biology, 32, 1577–1584. Lievens, D., & von Hundelshausen, P. (2011). Platelets in atherosclerosis. Thrombosis and Haemostasis, 106, 827–838. Liu, J., Huan, C. M., Chakraborty, M., Zhang, H. Q., Lu, D., Kuo, M. S., et al. (2009). Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circulation Research, 105, 295–303. Merten, M., & Thiagarajan, P. (2001). Role for sulfatides in platelet aggregation. Circulation, 104, 2955–2960. Milhas, D., Clarke, C. J., & Hannun, Y. A. (2010). Sphingomyelin metabolism at the plasma membrane: Implications for bioactive sphingolipids. Febs Letters, 584, 1887–1894. Mishra, S., Bedja, D., Amuzie, C., Avolio, A., & Chatterjee, S. (2015). Prevention of cardiac hypertrophy by the use of a glycosphingolipid synthesis inhibitor in ApoE-/- mice. Biochemical and Biophysical Research Communications, 465, 159–164. Mitsnefes, M. M., Fitzpatrick, J., Sozio, S. M., Jaar, B. G., Estrella, M. M., Monroy-Trujillo, J. M., et al. (2018). Plasma glucosylceramides and cardiovascular risk in incident hemodialysis patients. Journal of Clinical Lipidology, 12, 1513–1522. Mundra, P. A., Barlow, C. K., Nestel, P. J., Barnes, E. H., Kirby, A., Thompson, P., et al. (2018). Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. Jci Insight. https://doi.org/10.1172/jci.insight.121326. Narayanaswamy, P., Shinde, S., Sulc, R., Kraut, R., Staples, G., Thiam, C. H., et al. (2014). Lipidomic "Deep Profiling": An enhanced workflow to reveal new molecular species of signaling lipids. Analytical Chemistry, 86, 3043–3047. Nelson, J., Jiang, X. C., Tabas, I., Tall, A., & Shea, S. (2006). Plasma sphingomyelin and subclinical atherosclerosis: Findings from the multi-ethnic study of atherosclerosis. American Journal of Epidemiology, 163, 903–912. Pan, W., Yu, J. J., Shi, R. Z., Yan, L., Yang, T. L., Li, Y. J., et al. (2014). Elevation of ceramide and activation of secretory acid sphingomyelinase in patients with acute coronary syndromes. Coronary Artery Disease, 25, 230–235. Park, W. J., & Park, J. W. (2015). The effect of altered sphingolipid acyl chain length on various disease models. Biological Chemistry, 396, 693–705. Pavoine, C., & Pecker, F. (2009). Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovascular Research, 82, 175–183. Peterson, L. R., Xanthakis, V., Duncan, M. S., Gross, S., Friedrich, N., Volzke, H., et al. (2018). Ceramide remodeling and risk of cardiovascular events and mortality. Journal of the American Heart Association. https://doi.org/10.1161/JAHA.117.007931. Polzin, A., Piayda, K., Keul, P., Dannenberg, L., Mohring, A., Graler, M., et al. (2017). Plasma sphingosine-1-phosphate concentrations are associated with systolic heart failure in patients with ischemic heart disease. Journal of Molecular and Cellular Cardiology, 110, 35–37. Pong, J. Z., Ho, A. F. W., Tan, T. X. Z., Zheng, H. L., Pek, P. P., Sia, C. H., et al. (2019). ST-segment elevation myocardial infarction with non-chest pain presentation at the Emergency Department: Insights from the Singapore Myocardial Infarction Registry. Internal and Emergency Medicine, 14, 989–997. Raichur, S., Brunner, B., Bielohuby, M., Hansen, G., Pfenninger, A., Wang, B., et al. (2019). The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Molecular Metabolism, 21, 36–50. Rodriguez, J., Catapano, A., Ghiselli, G. C., & Sirtori, C. R. (1976). Turnover and aortic uptake of very low density lipoproteins (VLDL) from hypercholesteremic rabbits as a model for testing antiatherosclerotic compounds. Advances in Experimental Medicine and Biology, 67, 169–189. Sattler, K., & Levkau, B. (2009). Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovascular Research, 82, 201–211. Schissel, S. L., TweedieHardman, J., Rapp, J. H., Graham, G., Williams, K. J., & Tabas, I. (1996). Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein—proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. Journal of Clinical Investigation, 98, 1455–1464. Sigruener, A., Kleber, M. E., Heimerl, S., Liebisch, G., Schmitz, G., & Maerz, W. (2014). Glycerophospholipid and sphingolipid species and mortality: The Ludwigshafen Risk and Cardiovascular Health (LURIC) Study. PLoS ONE, 9, 85724. Slotte, J. P. (2013). Biological functions of sphingomyelins. Progress in Lipid Research, 52, 424–437. Takahashi, T., & Suzuki, T. (2012). Role of sulfatide in normal and pathological cells and tissues. Journal of Lipid Research, 53, 1437–1450. Tan, C. S., Muller-Riemenschneider, F., Ng, S. H. X., Tan, P. Z., Chan, B. P. L., Tang, K. F., et al. (2015). Trends in stroke incidence and 28-day case fatality in a nationwide stroke registry of a multiethnic Asian population. Stroke, 46, 2728–2734. Tan, K. H. X., Tan, L. W. L., Sim, X., Tai, E. S., Lee, J. J., Chia, K. S., et al. (2018). Cohort profile: The Singapore Multi-Ethnic Cohort (MEC) study. International Journal of Epidemiology, 47(3), 699. Tippetts, T. S., Holland, W. L., & Summers, S. A. (2018). The ceramide ratio: a predictor of cardiometabolic risk. Journal of Lipid Research, 59, 1549–1550. Turpin-Nolan, S. M., Hammerschmidt, P., Chen, W. Y., Jais, A., Timper, K., Awazawa, M., et al. (2019). CerS1-derived C-18:0 ceramide in skeletal muscle promotes obesity-induced insulin resistance. Cell Reports, 26, 1–10.e7. Wang, D. D., Toledo, E., Hruby, A., Rosner, B. A., Willett, W. C., Sun, Q., et al. (2017). Plasma ceramides, mediterranean diet, and incident cardiovascular disease in the PREDIMED trial (Prevencion con Dieta Mediterranea). Circulation, 135, 2028–2040. Wang, X. G., Dong, J. B., Zhao, Y. R., Li, Y., & Wu, M. P. (2011). Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice. Lipids in Health and Disease, 10, 7. Wehrens, R., Hageman, J. A., van Eeuwijk, F., Kooke, R., Flood, P. J., Wijnker, E., et al. (2016). Improved batch correction in untargeted MS-based metabolomics. Metabolomics. https://doi.org/10.1007/s11306-016-1015-8. Yeboah, J., McNamara, C., Jiang, X. C., Tabas, I., Herrington, D. M., Burke, G. L., et al. (2010). Association of plasma sphingomyelin levels and incident coronary heart disease events in an adult population multi-ethnic study of atherosclerosis. Arteriosclerosis Thrombosis and Vascular Biology, 30, 628–633. Zhang, W., Elimban, V., Nijjar, M. S., Gupta, S. K., & Dhalla, N. S. (2003). Role of mitogen-activated protein kinase in cardiac hypertrophy and heart failure. Exp Clin Cardiol, 8, 173–183.