Plasma kinetics of ethanol conversion in a glow discharge

Plasma Physics Reports - Tập 38 - Trang 913-921 - 2012
D. S. Levko1, A. N. Tsymbalyuk2, A. I. Shchedrin3
1Israel Institute of Technology, Technion City, Haifa, Israel
2East Ukrainian State University, Lugansk, Ukraine
3Institute of Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Tóm tắt

The mechanism of ethanol conversion in a nonequilibrium glow discharge has been studied. It is shown that molecular hydrogen is produced in reactions between ethanol molecules and hydrogen atoms in the initial stage and in reactions involving active H, CH2OH, CH3CHOH, and formaldehyde in the final stage. Comparison with experimental data shows that the kinetic mechanism used in these calculations correctly predicts the concentrations of the main components of the gas mixture.

Tài liệu tham khảo

G. Petitpas, J. D. Rollier, A. Darmon, et al., Int. J. Hydrogen Energy 32, 2848 (2007). J. Warnatz, U. Maas, and R. Dibble, Combustion (Springer, Berlin, 2001). A. Fridman, Plasma Chemistry (Cambridge University Press, Cambridge, 2008). Y. Sekine, K. Urasaki, S. Kado, et al., Energy Fuels 18, 455 (2004). A. Yanguas-Gil, J. L. Hueso, J. Cotrino, et al., Appl. Phys. Lett. 85, 4004 (2004). O. Aubry, C. Met, A. Khacef, and J. M. Cormier, Chem. Eng. J. 106, 241 (2005). W. Wang, C. Zhu, and Y. Cao, Int. J. Hydrogen Energy 35, 1951 (2010). V. Ya. Chernyak, S. V. Olszewski, V. V. Yukhymenko, et al., IEEE Trans. Plasma Sci. 36, 2933 (2008). A. I. Shchedrin, D. S. Levko, V. Ya. Chernyak, et al., JETP Lett. 88, 99 (2008). A. I. Shchedrin, D. S. Levko, V. Ya. Chernyak, et al., Tech. Phys. Lett. 35, 449 (2009). Z. Yan, L. Chen, and H. Wang, J. Phys. D 41, 155205 (2008). www.iop.kiev.ua/~plasmachemgroup/ I. A. Soloshenko, V. V. Tsiolko, S. S. Pogulay, et al., Plasma Sources Sci. Technol. 16, 56 (2007). Y. Itikawa and N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005). R. Rejoub, C. D. Morton, B. G. Lindsay, and R. F. Stebbings, J. Chem. Phys. 118, 1756 (2003). R. Rejoub, B. G. Lindsay, and R. F. Stebbings, Phys. Rev. A 65, 042713 (2002). A. Dasgupta, M. Blaha, and J. L. Giuliani, Phys. Rev. A 61, 012703 (2000). Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991). T. Shirai, T. Tabata, H. Tawara, and Y. Itikawa, Atomic Data Nucl. Data Tables 80, 147 (2002). D. A. Erwin and J. A. Kunc, Phys. Rev. A 72, 052719 (2005). CRC Handbook of Chemistry and Physics, Ed. by D. R. Lide (CRC, New York, 2003). http://www-mae.ucsd.edu/~combustion/cermech/index. html T. Miyauchi, Y. Mori, and A. Imamura, Symp. Int. Combust. 16, 1073 (1977). N. M. Marinov, Int. J. Chem. Kinet. 31, 183 (1999). D. L. Baulch, C. J. Cobos, R. A. Cox, et al., J. Phys. Chem. Ref. Data 21, 411 (1992). A. F. Wagner and J. M. Bowman, J. Phys. Chem. 91, 5314 (1987). V. Lissianski, H. Yang, Z. Qin, et al., Chem. Phys. Lett. 240, 57 (1985). M. V. Petrova and F. Williams, Combust. Flame 144, 526 (2006). W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data 15, 1087 (1986). H. Du and J. Hessler, J. Phys. Chem. 100, 974 (1996). W. B. DeMore, S. P. Sander, D. M. Golden, et al., JPL Publication 97-4, Evaluation No. 12 (1997). J. Edelbuttel-Einhaus, K. Hoyermann, G. Rohde, and J. Seeba, Symp. Int. Combust. 24, 661 (1992). W. Tsang, J. Phys. Chem. Ref. Data 16, 471 (1987). W. Forst, J. Phys. Chem. 95, 3612 (1991). R. Humpfer, H. Oser, H. H. Grotheer, and T. Just, Symp. Int. Combust. 25, 721 (1994).