Plasma Potential Fluctuations in a Reflex Discharge with Thermionic Cathode

Plasma Physics Reports - Tập 49 - Trang 649-655 - 2023
M. A. Valinurov1,2, A. V. Gavrikov1, G. D. Liziakin1, A. P. Oiler1,2, R. A. Timirkhanov1
1Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow oblast, Russia

Tóm tắt

One of the promising applications of low-temperature plasma in crossed electric and magnetic fields is plasma mass separation. To its implementation it is necessary to create a magnetized plasma with a given spatial distribution of the plasma potential. Plasma potential distribution determines the particle trajectories during separation. One of the difficulties that lie in the way of creating an efficient separator is the oscillations of the plasma potential resulting from the development of various types of instabilities. In the present work, fluctuations of the plasma potential in a reflex discharge with a thermionic cathode are studied. An analysis of the frequencies of plasma potential oscillations for magnetic fields in the range of 1–1.4 kG is presented. Measurements of the radial profiles of the root-mean-square deviation of the plasma potential are provided.

Tài liệu tham khảo

I. D. Kaganovich, A. Smolyakov, Y. Raitses, E. Ahedo, I. G. Mikellides, B. Jorns, F. Taccogna, R. Gueroult, S. Tsikata, A. Bourdon, J.-P. Boeuf, M. Keidar, A. T. Powis, M. Merino, M. Cappelli, et al., Phys. Plasmas 27, 120601 (2020). https://doi.org/10.1063/5.0010135 R. Gueroult, S. J. Zweben, N. J. Fisch, and J.-M. Rax, Phys. Plasmas 26, 043511 (2019). https://doi.org/10.1063/1.5083229 E. Y. Choueiri, Phys. Plasmas 8, 1411 (2001). https://doi.org/10.1063/1.1354644 A. Simon, Phys. Fluids 6, 382 (1963). https://doi.org/10.1063/1.1706743 F. C. Hoh, Phys. Fluids 6, 1184 (1963). https://doi.org/10.1063/1.1706878 N. A. Marusov, E. A. Sorokina, V. I. Ilgisonis, and V. P. Lakhin, Phys. Plasmas 26, 090701 (2019). https://doi.org/10.1063/1.5111948 A. I. Smolyakov, O. Chapurin, W. Frias, O. Koshkarov, I. Romadanov, T. Tang, M. Umansky, Y. Raitses, I. D. Kaganovich, and V. P. Lakhin, Plasma Phys. Controlled Fusion 59, 014041 (2016). G. Liziakin, N. Antonov, V. S. Smirnov, R. Timirkhanov, A. Oiler, R. Usmanov, A. Melnikov, N. Vorona, S. Kislenko, A. Gavrikov, and V. P. Smirnov, J. Phys. D: Appl. Phys. 54, 414005 (2021). V. P. Smirnov, A. A. Samokhin, N. A. Vorona, and A. V. Gavrikov, Plasma Phys. Rep. 39, 456 (2013). https://doi.org/10.1134/S1063780X13050103 G. Liziakin, N. Antonov, R. Usmanov, A. Melnikov, R. Timirkhanov, N. Vorona, V. S. Smirnov, A. Oiler, S. Kislenko, A. Gavrikov, and V. P. Smirnov, Plasma Phys. Controlled Fusion 63, 032002 (2021). E. B. Hooper, Jr., in Advances in Electronics and Electron Physics, Ed. by L. Marton and C. Marton (Academic, New York, 1969), Vol. 27, p. 295. J. Carlsson, I. Kaganovich, A. Powis, Y. Raitses, I. Romadanov, and A. Smolyakov, Phys. Plasmas 25, 061201 (2018). https://doi.org/10.1063/1.5017467 A. T. Powis, J. A. Carlsson, I. D. Kaganovich, Y. Raitses, and A. Smolyakov, Phys. Plasmas 25, 072110 (2018). https://doi.org/10.1063/1.5038733 J. Y. Kim, J. Y. Jang, J. Choi, J. Wang, W. I. Jeong, M. A. I. Elgarhy, G. Go, K.-J. Chung, and Y. S. Hwang, Plasma Sources Sci. Technol. 30, 025011 (2021). R. F. Kemp and J. M. Sellen, Jr., Rev. Sci. Instrum. 37, 455 (1966). https://doi.org/10.1063/1.1720213 Y. Murzaev, G. Liziakin, A. Gavrikov, R. Timirkhanov, and V. Smirnov, Plasma Sci. Technol. 21, 045401 (2019). https://doi.org/10.1088/2058-6272/aaf250