Plasma Nitrogen Doping of Nanostructured Reduced Graphene Oxide

А. С. Пушкарев1, О. К. Алексеева1, I. V. Pushkareva1, B. L. Shapir1, Ratibor G. Chumakov1, В. В. Тишкин1, M. V. Kozlova2, Valery N. Kalinichenko3, В. Н. Фатеев1
1National Research Center Kurchatov Institute, Moscow, Russia
2National Research University Moscow Power Engineering Institute, Moscow, Russia
3Semyonov Institute of Chemical Physics, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Z.-L. Xu, J.-K. Kim, and K. Kang, Nano Today 19, 84 (2018). https://doi.org/10.1016/j.nantod.2018.02.006

T. Chen and L. Dai, Mater. Today. 16, 272 (2013). https://doi.org/10.1016/j.mattod.2013.07.002

E. Antolini, Appl. Catal. B 88, 1 (2009). https://doi.org/10.1016/j.apcatb.2008.09.030

I. V. Pushkareva, A. S. Pushkarev, S. A. Grigoriev, E. K. Lyutikova, S. V. Akel’kina, M. A. Osina, E. P. Slavcheva, and V. N. Fateev, Russ. J. Appl. Chem. 89, 2109 (2016).

P. Trogadas, T. F. Fuller, and P. Strasser, Carbon 75, 5 (2014). https://doi.org/10.1016/j.carbon.2014.04.005

L. Du, Y. Shao, J. Sun, et al., Nano Energy 29, 314 (2016). https://doi.org/10.1016/j.nanoen.2016.03.016

D. D. Spasov, N. A. Ivanova, A. S. Pushkarev, et al., Catalysts 9, 803 (2019). https://doi.org/10.3390/catal9100803

I. E. Baranov, V. I. Porembskii, E. K. Lyutikova, et al., Chem. Probl. 17, 489 (2019). https://doi.org/10.32737/2221-8688-2019-4-489-499

S. V. Tkachev, E. Y. Buslaeva, A. V. Naumkin, et al., Inorg. Mater. 48, 796 (2012). https://doi.org/10.1134/S0020168512080158

J. W. Chiou, S. C. Ray, S. I. Peng, et al., J. Phys. Chem. C 116, 16251 (2012). https://doi.org/10.1021/jp303465u

A. Ambrosi and M. Pumera, Chem. Eur. J. 22, 153 (2016). https://doi.org/10.1002/chem.201503110

A. L. Ivanovskii, Russ. Chem. Rev. 81, 571 (2012).

A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

F. Bonaccorso, L. Colombo, G. Yu, et al., Science (Washington, DC, U. S.) 347 (6217), 1246501 (2015). https://doi.org/10.1126/science.1246501

S. Shahgaldi and J. Hamelin, Carbon 94, 705 (2015). https://doi.org/10.1016/j.carbon.2015.07.055

J. Liu, H. J. Choi, and L.-Y. Meng, J. Ind. Eng. Chem. 64, 1 (2018). https://doi.org/10.1016/j.jiec.2018.02.021

H. Wang, T. Maiyalagan, and X. Wang, ACS Catal. 2, 781 (2012). https://doi.org/10.1021/cs200652y

J. Duan, S. Chen, M. Jaroniec, and S. Z. Qiao, ACS Catal. 5, 5207 (2015). https://doi.org/10.1021/acscatal.5b00991

Y. Chen, J. Wang, H. Liu, et al., J. Phys. Chem. C 115, 3769 (2011). https://doi.org/10.1021/jp108864y

K. Jukk, N. Kongi, P. Rauwel, et al., Electrocatalysis 7, 428 (2016). https://doi.org/10.1007/s12678-016-0322-1

Y. Deng, Y. Xie, K. Zou, and X. Ji, J. Mater. Chem. A 4, 1144 (2016). https://doi.org/10.1039/C5TA08620E

N. A. Kumar, H. Nolan, N. McEvoy, et al., J. Mater. Chem. A 1, 4431 (2013). https://doi.org/10.1039/c3ta10337d

A. Mueller, M. G. Schwab, N. Encinas, et al., Carbon 84, 426 (2015). https://doi.org/10.1016/j.carbon.2014.11.054

M. Rybin, A. Pereyaslavtsev, T. Vasilieva, et al., Carbon 96, 196 (2016). https://doi.org/10.1016/j.carbon.2015.09.056

N. Karthikeyan, B. P. Vinayan, M. Rajesh, et al., Fuel Cells 15, 278 (2015). https://doi.org/10.1002/fuce.201400134

O. K. Alekseeva, E. K. Lutikova, V. V. Markelov, et al., Int. J. Electrochem. Sci. 13, 797 (2018). https://doi.org/10.20964/2018.01.79

O. Alekseeva, A. Mikhalev, E. Lutikova, et al., Catalysts 8, 665 (2018). https://doi.org/10.3390/catal8120665

S. V. Akel’kina, A. S. Pushkarev, S. A. Grigoriev, I. V. Pushkareva, and V. N. Fateev, Russ. J. Electrochem. 54, 251 (2018).

S. A. Grigor’ev, A. S. Pushkarev, V. N. Kalinichenko, I. V. Pushkareva, M. Yu. Presnyakov, and V. N. Fateev, Kinet. Catal. 56, 689 (2015).

O. K. Alexeeva and V. N. Fateev, Int. J. Hydrogen Energy 41, 3373 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.147

V. N. Fateev, O. K. Alekseeva, V. I. Porembskii, et al., Al’tern. Energet. Ekol., No. 25–27, 88 (2017). https://doi.org/10.15518/isjaee.2017.25-27.088-099

S. Grigoriev, V. Fateev, A. Pushkarev, et al., Materials 11, 1405 (2018). https://doi.org/10.3390/ma11081405

A. K. Mishra and S. Ramaprabhu, Desalination 282, 39 (2011). https://doi.org/10.1016/j.desal.2011.01.038

K. S. Kim, Y. Zhao, H. Jang, et al., Nature (London, U.K.) 457 (7230), 706 (2009). https://doi.org/10.1038/nature07719

Y. J. Oh, J. J. Yoo, Y. Kim Il, et al., Electrochim. Acta 116, 118 (2014). https://doi.org/10.1016/j.electacta.2013.11.040

J. Ma, A. Habrioux, Y. Luo, et al., J. Mater. Chem. A 3, 11891 (2015). https://doi.org/10.1039/C5TA01285F

A. Śliwak, B. Grzyb, N. Díez, and G. Gryglewicz, Appl. Surf. Sci. 399, 265 (2017). https://doi.org/10.1016/j.apsusc.2016.12.060

S. Ratso, I. Kruusenberg, M. Vikkisk, et al., Carbon 73, 361 (2014). https://doi.org/10.1016/j.carbon.2014.02.076

L. Stobinski, B. Lesiak, A. Malolepszy, et al., J. Electron Spectrosc. Relat. Phenom. 195, 145 (2014). https://doi.org/10.1016/j.elspec.2014.07.003

C. Botas, P. Álvarez, C. Blanco, et al., Carbon 52, 476 (2013). https://doi.org/10.1016/j.carbon.2012.09.059

D. Usachov, O. Vilkov, A. Grüneis, et al., Nano Lett. 11, 5401 (2011). https://doi.org/10.1021/nl2031037

P. Hu, K. Liu, C. P. Deming, and S. Chen, J. Chem. Technol. Biotechnol. 90, 2132 (2015). https://doi.org/10.1002/jctb.4797

Z. Wu, M. Song, J. Wang, and X. Liu, Catalysts 8, 196 (2018). https://doi.org/10.3390/catal8050196

L. Zhang and Z. Xia, J. Phys. Chem. C 115, 11170 (2011). https://doi.org/10.1021/jp201991