Plasma Focus Device as a Breeder of Proton to Produce Short Lived Radioisotope 18F

Springer Science and Business Media LLC - Tập 28 - Trang 350-354 - 2009
Alireza Asle-Zaeem1, S. Mahmood Sadat Kiai2, Mahmood Sedaghatizadeh1, Shirin Adlparvar2, Shahab Sheibani2
1Department of Physics, Khaje Nasir University of Technology (K.N. Toosi), Tehran, Iran
2Nuclear Science Research School, A.E.O.I, Nuclear Science & Technology Research Institute (N.S.T.R), Tehran, Iran

Tóm tắt

In a plasma focus device, the nuclear fusion products are created through the thermal and non-thermal (beam-target) mechanisms. The beam target character of the pinched plasma is used to determine the yield of 3.02 Mev protons (when deuterium filling gas is used) at the optimized regime. For this situation, a combination of “moving boiler” model and a shock wave theory are employed. The numerical simulations for the production of the positron emitter nuclide, 18F (T 1/2 = 110 min; widely used in positron emission tomography), for two Mather type devices (NX2 and PF1000) show that, the rules of the drift velocity as well as the drive parameters have an high impact on the final yields.

Tài liệu tham khảo

M. Scholz, Institute of Plasma Physics and Laser Microfusion, Recent results of MJ plasma-focus experiment, 6th DZP OXFORD, (IPPLM) (2005) J.S. Brzosko, V. Nardi, Phys. Lett. A 155, 162–168 (1991) A.A. zaeem, S.M. Sadatkiai, M. Sedaghatizade, S. Adlparvar, S. Sheibani, J. Fusion Energy (2008) A. Ergisto et al., Nucl. Technol. Radiat. Prot. 20(1), 33–37 (2005) B. Bienkowska, S. Jednorog, I.M. Ivanova-Stanik, M. Scholz, A. Szydlowski, Acta physica slovaca 54(4), 401–407 (2004) J.S. Berzosko et al., Application of Accelerators in research and industry, sixteen l.Conf (2001) National nuclear data center (Brookhaven national laboratory), http://www.nndc.bnl.gov/ V.A. Gribkov et al., J. Phys. D Appl. Phys. 40, 3592–3607 (2007) K. Hubner, H. Bruhns, K. Steinmetz, Phys. Lett. 69A(4) (1987) S. Lee, IEEE Trans. Plasma Sci. 19(5), 912 (1991) S. Lee, A. Serban, IEEE Trans. Plasma Sci. 24, 1101 (1996) K.H. Kwek et al., IEEE Trans. Plasma Sci. 38(1), 103 (1989) L. Soto, Plasma Phys. Controlled Fusion 47, A361–A381 (2005) S. Lee Plasma focus (Radiative) Computational Model and Code, http://Sci.nie.edu.sg/ckplee; e-published by CKP Lee, NTU/NIE-first published June (2000) A. Serban, S. Lee, J. Plasma Phys. 60(1), 3–15 (1998) T. Zhang, R.S. Rawat, S.M. Hassan, J.J. Lin, S. Mahmood, T.L. Tan, S.V. Springham, V.A. Gribkov, P. Lee, S. Lee, IEEE Trans. Plasma Sci. 34(5), 2356–2360 (2006) V. Siahpoush, M.A. Tafreshi, S. Sobhanian, S. Khorram, Plasma Phys. Control Fusion 47, 1065–1075 (2005) S. Goudarzi, R. Amrollahi, R.S. Moghaddam, J. Fusion Energy 27, 195–199 (2008) S. Lee, P. Lee, S.H. Saw, R.S. Rawat, Plasma Phys. Control. Fusion 50 065012 (8pp) (2008) K.S. Krane, Introductory Nuclear Physics (Wiley, NY, 1988)