Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities

Botany - Tập 92 Số 4 - Trang 303-311 - 2014
Steven W. Kembel1, Rebecca Mueller2
1Département des Sciences biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
2Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA

Tóm tắt

The aerial surface of plants, known as the phyllosphere, represents a widespread and diverse habitat for microbes, but the fungal communities colonizing the surface of leaves are not well characterized, and how these communities are assembled on hosts is unknown. We used high-throughput sequencing of fungal communities on the leaves of 51 tree species in a lowland tropical rainforest in Panama to examine the influence of host plant taxonomy and traits on the fungi colonizing the phyllosphere. Fungal communities on leaves were dominated by the phyla Ascomycota (79% of all sequences), Basidiomycota (11%), and Chytridiomycota (5%). Host plant taxonomic identity explained more than half of the variation in fungal community composition across trees, and numerous host functional traits related to leaf morphology, leaf chemistry, and plant growth and mortality were significantly associated with fungal community structure. Differences in fungal biodiversity among hosts suggest that individual tree species support unique fungal communities and that diverse tropical forests also support a large number of fungal species. Similarities between phyllosphere and decomposer communities suggest that fungi inhabiting living leaves may have significant roles in ecosystem functioning in tropical forests.

Từ khóa


Tài liệu tham khảo

10.1111/j.1442-9993.2001.01070.pp.x

10.1146/annurev.phyto.38.1.145

10.1890/05-1459

10.1073/pnas.2533483100

10.1139/b05-008

10.1111/j.1365-2745.2012.01966.x

10.1111/j.1461-0248.2006.00905.x

10.1038/nmeth.f.303

10.1080/01621459.1992.10475194

10.1016/j.funeco.2011.12.004

10.1111/j.1461-0248.2008.01219.x

10.1111/j.1469-8137.2012.04215.x

10.1016/j.femsre.2004.11.005

10.1093/bioinformatics/btq461

10.1046/j.1472-4642.2003.00039.x

10.1128/AEM.02505-12

10.5194/bg-9-1125-2012

10.1111/j.1461-0248.2010.01465.x

10.3852/10-388

10.3852/mycologia.98.6.1053

10.1073/pnas.0607968104

10.1371/journal.pone.0015406

10.1007/s11104-008-9814-y

10.1017/S0953756201004725

10.1038/nature05110

10.1093/aob/mcf142

10.1111/j.1469-8137.2009.02990.x

10.1111/j.1469-8137.2010.03197.x

10.1007/s00248-002-1065-5

10.1111/mec.12259

10.1073/pnas.0909820106

10.1128/AEM.69.4.1875-1883.2003

10.1016/S0958-1669(02)00313-0

10.1128/AEM.06826-11

Lymbery A.J., 1989, Parasitol. Today, 5, 298, 10.1016/0169-4758(89)90021-5

10.1126/science.1143082

Mantel N., 1967, Cancer Res., 27, 209

10.1007/s00248-011-9973-x

10.1073/pnas.93.10.4600

10.1128/AEM.66.1.369-374.2000

10.1111/j.1469-8137.2011.03965.x

10.1007/s00442-011-2138-2

Migahed F.F., 2001, Mycobiology, 29, 198, 10.1080/12298093.2001.12015788

Mueller G.M., 2007, What can we predict? Biodivers. Conserv., 16, 1, 10.1007/s10531-006-9117-7

10.1139/w06-023

10.1007/S10267-003-0135-Y

10.1007/S10267-003-0155-7

10.1093/bioinformatics/btg412

10.1038/ismej.2013.66

10.1007/BF00817932

10.1080/0735-260291044359

10.1146/annurev-phyto-080508-081831

10.1111/j.1462-2920.2010.02258.x

10.1111/j.1469-8137.2009.02773.x

10.3114/sim.2009.64.06

10.1016/j.fbr.2007.05.001

10.1016/j.tplants.2004.04.005

10.1016/j.fbr.2007.05.004

Suryanarayanan T.S., 2003, Curr. Sci., 85, 489

10.1139/w02-008

10.1111/j.1461-0248.2007.01139.x

10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2

10.1038/nrmicro2910

10.1038/ismej.2012.116

10.1111/j.1744-7348.1972.tb01278.x

10.1038/nature02403

10.1093/aob/mcl066

10.1890/09-2335.1