Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses

Shameer Syed1, T. N. V. K. V. Prasad1
1Nanotechnology laboratory, Institute of Frontier Technology, Regional Agricultural Research Station, Acharya N G Ranga Agricultural University, Tirupati, Andhra Pradesh, 517502, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahemad M, Khan MS (2012) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11:63–71

Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

Aino M, Maekawa Y, Mayama S, Kato H (1997) Biocontrol of bacterial wilt of tomato by producing seedlings colonized with endophytic antagonistic pseudomonads. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth promoting rhizobacteria: present status and future prospects. Nakanishi Printing, Sapporo, pp 120–123

Alexandre G, Greer SE, Zhulin IB (2000) Energy taxis is the dominant behavior in Azospirillum brasilense. J Bacteriol 182(21):6042–6048

Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

Bach E, dos Santos SGD, de Carvalho FG, Lisboa BB, Passaglia LM (2016) Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol 99:141–149

Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid over producing Sinorhizobium melilotistrain. J Exp Bot 60(11):3097–3107

Blumer C, Haas D (2000) Mechanism, regulation and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB, Steevens D, Yaver D (2002) Munumbicins, wide-spectrum antiobiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685

Chemin L, Chet I (2002) Microbial enzymes in biocontrol of plant pathogens and pests. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, pp 171–225

Chen C, Bauske EM, Musson G, Rodriguez-Kabana R, Kloepper JW (1995) Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91

Costa R, Van Aarle IM, Mendes R, Van Elsas JD (2009) Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within Gram-negative bacteria. Environ Microbiol 11(1):159–175

Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48(5):505–512

De Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15(11):1173–1180

De Souza JT, De Boer M, De Waard P, Van Beek TA, Raaijmakers JM (2003) Biochemical, genetic and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

Dharmasiri N, Estelle M (2004) Auxin signaling and regulated protein degradation. Trends Plant Sci 9(6):302–308

Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960

Dubuis C, Keel C, Haas D (2007) Dialogues of root-colonizing biocontrol pseudomonads. Eur J Plant Pathol 119:(3):311–328

Duffy B, Keel C, Defago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70(3):1836–1842

Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31(4):861–864

Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45(6):563–571

Fernando WGD, Nakkeeran S, Zhang Y (2006) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 67–109

Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

Franchi E, Rolli E, Marasco R, Agazzi G, Borin S, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G (2017) Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J Soils Sediments 17(5):1224–1236

Frankowski J, Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

Gaffney TD, Lam ST, Ligon J, Gates K, Frazelle A, Di Maio J, Hill S, Goodwin S, Torkewitz N, Allshouse AM (1994) Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant Microbe Interact 7:455–463

Gamalero E, Glick BR (2010) Bacterial ACC deaminase and IAA: interactions and consequences for plant growth in polluted environments. In: Golubev IA (ed) Hand book of phytoremediation. Nova Science, New York, NY, pp 763–774

Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL (2008) A Ca2+-dependent bacterial antifreeze protein domain has a novel β-helical ice-binding fold. Biochem J 411(1):171–180

Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica, Waterloo

Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240

Guerinot ML, Ying Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104(3):815–820

Haas D, Keel C (2003) Regulation of antibiotic production in root colonizing Pseudomonas sp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S, Zhou W (2016) Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul 80(1):23–36

Jin W, He YF, Tang CX, Wu P, Zheng SJ (2006) Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant Cell Environ 29:(5):888–897

Kawahara H, Iwanaka Y, Higa S (2007) A novel, intracellular antifreeze protein in an antarctic bacterium, Flavobacterium xanthum. Cryo-letters 28:(1):39–49

Kong Z, Glick BR (2017) The role of plant growth-promoting bacteria in metal phytoremediation. Adv Microb Physiol 71:97–132

Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact 4:5–13

Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119:265–278

Lucy M, Reed E, Bernard RG (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie van leeuwenhoek 86:1–25

Lugtenberg B, Kamilova F (2009) Plantgrowth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319

Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas sp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

Mazhar R, Ilyas N, Raja NI, Saeed M, Hussain M, Seerat W, Qureshi H, Shabir S (2016) Plant growth promoting rhizobacteria: biocontrol potential for pathogens. Pure Appl Biol 5(4):1

Mazzola M (2004) Assessment and management of soil microbial community structure for disease suppression 1. Annu Rev Phytopathol 42:35–59

Miller JB, Oldroyd GE (2012) The role of diffusible signals in the establishment of rhizobial and mycorrhizal symbioses. Signaling and communication in plant symbiosis.Springer, Berlin, pp 1–30

Milner JL, Raffel SJ, Lethbridge BJ, Handelsman J (1995) Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Appl Microb Biotechnol 43:685–691

Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065

Molina L, Constantinescu F, Reimmann C, Duffy B, De´fago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microb Ecol 45:71–81

Nielsen TH, Sørensen D, Tobiasen C, Andersen JB, Christeophersen C, Givskov M, Sørensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas sp.from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:(3):115–125

Pettersson M, Bååth E (2004) Effects of the properties of the bacterial community on pH adaptation during recolonisation of a humus soil. Soil Biol Biochem 36(9):1383–1388

Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:(3):948–955

Pieterse CM, Van Wees SC, Van Pelt JA, Knoester M, Laan R, Gerrits H, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:(9):1571–1580

Pieterse CM, Van Pelt JA, Van Wees SC, Ton J, Léon-Kloosterziel KM, Keurentjes JJ, Van Loon LC (2001) Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression. Eur J Plant Pathol 107:(1):51–61

Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–269

Podile AR, Vukanti RV, Sravani A, Kalam S, Dutta S, Durgeshwar P, Rao VP (2013) Root colonization and quorum sensing are the driving forces of plant growth promoting rhizobacteria (PGPR) for growth promotion. Proc Natl Acad Sci India Sect B 80:407–413

Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol producing Pseudomonas sp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van leeuwenhoek 81:537–547

Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61(2):214–221

Rezzonico F, Zala M, Keel C, Duffy B, Moënne-Loccoz Y, Défago G (2007) Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection? New Phytol 173(4):861–872

Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557

Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296(1):52–59

Sacherer P, De´fago G, Hass D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116:155–160

Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

Schippers B, Bakker AW, Bakker PAHM., Van Peer R (1991) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. The rhizosphere and plant growth. Springer, Netherlands, pp 211–219

Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26

Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 infuences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35(7):887–894

Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22(6):641–650

Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Annu Rev Phytopathol 37:473–491

Stephane C, Brion D, Jerzy N, Christophe C, Essaid AB (2005) Use of plant growth bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71(9):4951–4959

Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21(7):958–966

Sun X, Griffith M, Pasternak JJ, Glick BR (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Can J Microbiol 41(9):776–784

Syed S (2016) Haloalkaliphilic Bacillus species from solar salterns: an ideal prokaryote for bioprospecting studies. Ann Microbiol 66:(3):1315–1327

Syed S, Chinthala P (2015) Heavy metal detoxification by different Bacillus species Isolated from solar salterns. Scientifica. https://doi.org/10.1155/2015/319760

Van Loon LC, Bakker PAHM., Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–483

Van den Broek D, Chin-A-Woeng TF, Eijkemans K, Mulders IH, Bloemberg GV, Lugtenberg BJ (2003) Biocontrol traits of Pseudomonas sp. are regulated by phase variation. Mol Plant-Microbe Interact 16(11):1003–1012

Viswanathan R, Samiyappan R (1999) Induction of systemic resistance by plant growth promoting rhizobacteria against red rot disease in sugarcane. Sugar Tech 1(3):67–76

Wani PA, Khan MS, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55(1):33–42

Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50