Plant community and soil available nutrients drive arbuscular mycorrhizal fungal community shifts during alpine meadow degradation
Tài liệu tham khảo
Augé, 2001, Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis, Mycorrhiza, 11, 3, 10.1007/s005720100097
Ba, 2012, The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe, Plant Soil, 352, 143, 10.1007/s11104-011-0985-6
Bai, 2008, Proxy global assessment of land degradation, Soil Use Manag., 24, 223, 10.1111/j.1475-2743.2008.00169.x
Bender, 2015, Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland, Soil Biol. Biochem., 80, 283, 10.1016/j.soilbio.2014.10.016
Bidartondo, 2002, Epiparasitic plants specialized on arbuscular mycorrhizal fungi, Nature, 419, 389, 10.1038/nature01054
Brundrett, 1994
Cai, 2014, Grassland degradation decrease the diversity of arbuscular mycorrhizal fungi species in tibet plateau, Not. Bot. Horti Agrobo., 42, 333, 10.15835/nbha.42.2.9458
Caporaso, 2010, QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 7, 335, 10.1038/nmeth.f.303
Chagnon, 2015, Trait-based partner selection drives mycorrhizal network assembly, Oikos, 124, 1609, 10.1111/oik.01987
Chagnon, 2013, A trait-based framework to understand life history of mycorrhizal fungi, Trends Plant Sci., 18, 484, 10.1016/j.tplants.2013.05.001
Che, 2017, Increase in ammonia-oxidizing microbe abundance during degradation of alpine meadows may lead to greater soil nitrogen loss, Biogeochemistry, 136, 341, 10.1007/s10533-017-0399-5
Chen, 2016, Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems, J. Biogeogr., 43, 2027, 10.1111/jbi.12806
Correa, 2015, Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown, Mycorrhiza, 25, 499, 10.1007/s00572-015-0627-6
De Deyn, 2005, Linking aboveground and belowground diversity, Trends Ecol. Evol., 20, 625, 10.1016/j.tree.2005.08.009
Dong, 2020, Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau, Agric. Ecosyst. Environ., 287, 10.1016/j.agee.2019.106684
Dumbrell, 2010, Idiosyncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi: is there a role for stochastic processes?, J. Ecol., 98, 419
Edgar, 2010, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 26, 2460, 10.1093/bioinformatics/btq461
Facelli, 2010, Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition, New Phytol., 185, 1050, 10.1111/j.1469-8137.2009.03162.x
Feddermann, 2010, Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorous nutrition and symbiotic efficiency, Fungal Ecol, 3, 1, 10.1016/j.funeco.2009.07.003
Fu, 2021, Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier, Bull. Chin. Acad. Sci., 36, 1298
Fuchs, 2004, Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes, Mycorrhiza, 14, 277, 10.1007/s00572-004-0314-5
Gai, 2006, Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau, Mycorrhiza, 16, 151, 10.1007/s00572-005-0031-8
Garcia de Leon, 2016, Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities, FEMS Microbiol. Ecol., 92, 10.1093/femsec/fiw097
Han, 2020, Effect of grassland degradation on soil quality and soil biotic community in a semi-arid temperate steppe, Ecol. Process., 9, 10.1186/s13717-020-00256-3
Harris, 2009, Soil microbial communities and restoration ecology: facilitators or followers?, Science, 325, 573, 10.1126/science.1172975
Hart, 2002, Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi, New Phytol., 153, 335, 10.1046/j.0028-646X.2001.00312.x
Hart, 2001, Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics, Mycologia, 93, 1186, 10.1080/00275514.2001.12063251
Helgason, 2009, Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota), J. Exp. Bot., 60, 2465, 10.1093/jxb/erp144
Hempel, 2018, Passengers and drivers of arbuscular mycorrhizal fungal communities at different scales, New Phytol., 220, 952, 10.1111/nph.15139
Hiiesalu, 2014, Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass, New Phytol., 203, 233, 10.1111/nph.12765
Hodge, 2013, Microbial mediation of plant competition and community structure, Funct. Ecol., 27, 865, 10.1111/1365-2435.12002
Hodge, 2010, Nutritional ecology of arbuscular mycorrhizal fungi, Fungal Ecol, 3, 267, 10.1016/j.funeco.2010.02.002
Hoeksema, 2010, A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi, Ecol. Lett., 13, 394, 10.1111/j.1461-0248.2009.01430.x
Jansa, 2019, Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions, Chemical and Biological Technologies in Agriculture, 6, 10, 10.1186/s40538-019-0147-2
Johnson, 2010, Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales, New Phytol., 185, 631, 10.1111/j.1469-8137.2009.03110.x
Johnson, 2010, Resource limitation is a driver of local adaptation in mycorrhizal symbioses, P. Natl. Acad. Sci. USA., 107, 2093, 10.1073/pnas.0906710107
Johnson, 2015, Mycorrhizal phenotypes and the law of the minimum, New Phytol., 205, 1473, 10.1111/nph.13172
Kang, 2020, Arbuscular mycorrhizal fungi alleviate the negative effect of nitrogen deposition on ecosystem functions in meadow grassland, Land Degrad. Dev., 31, 748, 10.1002/ldr.3491
Kardol, 2010, How understanding aboveground-belowground linkages can assist restoration ecology, Trends Ecol. Evol., 25, 670, 10.1016/j.tree.2010.09.001
Koziol, 2017, The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession, J. Appl. Ecol., 54, 1301, 10.1111/1365-2664.12843
Landis, 2004, Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas, New Phytol., 164, 493, 10.1111/j.1469-8137.2004.01202.x
Lee, 2008, Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi, FEMS Microbiol. Ecol., 65, 339, 10.1111/j.1574-6941.2008.00531.x
Leifheit, 2014, Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation-a meta-analysis, Plant Soil, 374, 523, 10.1007/s11104-013-1899-2
Lekberg, 2012, 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities, J. Ecol., 100, 151
Li, 2016, Changes of soil microbial community under different degraded gradients of alpine meadow, Agric. Ecosyst. Environ., 222, 213, 10.1016/j.agee.2016.02.020
Liu, 2018, Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles, Agric. Ecosyst. Environ., 252, 93, 10.1016/j.agee.2017.10.011
Liu, 2015, Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi, Plant Soil, 386, 341, 10.1007/s11104-014-2261-z
Lyu, 2020, Comprehensive grassland degradation monitoring by remote sensing in Xilinhot, inner Mongolia, China, Sustainability, 12, 10.3390/su12093682
Ma, 2002, Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow river source region, Pratacult. Sci., 19, 1
Maitra, 2021, Phosphorus fertilization rather than nitrogen fertilization, growing season and plant successional stage structures arbuscular mycorrhizal fungal community in a subtropical forest, Biol. Fertil. Soils, 57, 685, 10.1007/s00374-021-01554-4
Mao, 2019, Arbuscular mycorrhizal fungal community recovers faster than plant community in historically disturbed Tibetan grasslands, Soil Biol. Biochem., 134, 131, 10.1016/j.soilbio.2019.03.026
Martinez-Garcia, 2015, Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development, New Phytol., 205, 1565, 10.1111/nph.13226
Miller, 1995, External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities, Oecologia, 103, 17, 10.1007/BF00328420
Morris, 2016, The invasive annual cheatgrass releases more nitrogen than crested wheatgrass through root exudation and senescence, Oecologia, 181, 971, 10.1007/s00442-015-3544-7
Neuenkamp, 2018, The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities, New Phytol., 220, 1236, 10.1111/nph.14995
Newman, 1987, The distribution of mycorrhizas among families of vascular plants, New Phytol., 106, 745, 10.1111/j.1469-8137.1987.tb00175.x
Ohsowski, 2014, Where the wild things are: looking for uncultured Glomeromycota, New Phytol., 204, 171, 10.1111/nph.12894
Powell, 2009, Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi, P. Roy. Soc. B-Biol. Sci., 276, 4237
Powell, 2018, Biodiversity of arbuscular mycorrhizal fungi and ecosystem function, New Phytol., 220, 1059, 10.1111/nph.15119
Qiu, 2008, The third pole, Nature, 454, 393, 10.1038/454393a
Sanders, 2003, Preference, specificity and cheating in the arbuscular mycorrhizal symbiosis, Trends Plant Sci., 8, 143, 10.1016/S1360-1385(03)00012-8
Sato, 2005, A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis, Grassl. Sci., 51, 179, 10.1111/j.1744-697X.2005.00023.x
Segre, 2014, Competitive exclusion, beta diversity, and deterministic vs. stochastic drivers of community assembly, Ecol. Lett., 17, 1400, 10.1111/ele.12343
Sepp, 2018, Effects of land use on arbuscular mycorrhizal fungal communities in Estonia, Mycorrhiza, 28, 259, 10.1007/s00572-018-0822-3
Smilauer, 2021, Arbuscular mycorrhizal fungal communities of forbs and C3 grasses respond differently to cultivation and elevated nutrients, Mycorrhiza, 31, 455, 10.1007/s00572-021-01036-3
Su, 2007, Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe, Mycorrhiza, 17, 689, 10.1007/s00572-007-0151-4
Sykorova, 2007, The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment, Mycorrhiza, 18, 1, 10.1007/s00572-007-0147-0
Tang, 2015, Changes in vegetation composition and plant diversity with rangeland degradation in the alpine region of Qinghai-Tibet Plateau, Rangel. J., 37, 107, 10.1071/RJ14077
Tian, 2009, Arbuscular mycorrhizal fungi in degraded typical steppe of inner Mongolia, Land Degrad. Dev., 20, 41, 10.1002/ldr.876
Treseder, 2018, Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: a trait-based predictive framework, J. Ecol., 106, 480
Valyi, 2016, Community assembly and coexistence in communities of arbuscular mycorrhizal fungi, ISME J., 10, 2341, 10.1038/ismej.2016.46
Vandenkoornhuyse, 2002, Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem, Mol. Ecol., 11, 1555, 10.1046/j.1365-294X.2002.01538.x
van der Heijden, 2008, The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems, Ecol. Lett., 11, 296, 10.1111/j.1461-0248.2007.01139.x
van der Heijden, 1998, Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity, Nature, 396, 69, 10.1038/23932
van der Heijden, 2006, The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland, New Phytol., 172, 739, 10.1111/j.1469-8137.2006.01862.x
van der Heyde, 2017, Arbuscular mycorrhizal fungus responses to disturbance are context-dependent, Mycorrhiza, 27, 431, 10.1007/s00572-016-0759-3
Veresoglou, 2012, Arbuscular mycorrhiza and soil nitrogen cycling, Soil Biol. Biochem., 46, 53, 10.1016/j.soilbio.2011.11.018
Voets, 2006, Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks, New Phytol., 172, 185, 10.1111/j.1469-8137.2006.01873.x
Wang, 2006, Phylogenetic distribution and evolution of mycorrhizas in land plants, Mycorrhiza, 16, 299, 10.1007/s00572-005-0033-6
Wang, 2017, Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: mechanisms and applications, Crit. Rev. Environ. Sci. Technol., 47, 1901, 10.1080/10643389.2017.1400853
Werner, 2015, Partner selection in the mycorrhizal mutualism, New Phytol., 205, 1437, 10.1111/nph.13113
Wipf, 2019, Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks, New Phytol., 223, 1127, 10.1111/nph.15775
Wu, 2017, Impacts of alpine wetland degradation on the composition, diversity and trophic structure of soil nematodes on the Qinghai-Tibetan Plateau, Sci Rep-UK, 7
Xiao, 2019, Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems, Biol. Fertil. Soils, 55, 457, 10.1007/s00374-019-01362-x
Yang, 2020, Global negative effects of livestock grazing on arbuscular mycorrhizas: a meta-analysis, Sci. Total Environ., 708, 10.1016/j.scitotenv.2019.134553
Yang, 2018, Effects of different land uses on community structure of soil arbuscular mycorrhizal fungi in sanjiang wetlands, Bangladesh J. Botany, 47, 689
Zhang, 2020, Ecological consequence of nomad settlement policy in the pasture area of Qinghai-Tibetan Plateau: from plant and soil perspectives, J. Environ. Manag., 260
Zhang, 2019, Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau, Glob. Ecol. Conserv., 20
Zhang, 2002, A discussion on the boundary and area of the Tibetan Plateau in China, Geogr. Res., 21, 1
Zhang, 2020, Root features determine the increasing proportion of forbs in response to degradation in alpine steppe, Tibetan plateau, Front. Env. Sci-SWITZ, 8
Zheng, 2015, Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist, New Phytol., 205, 361, 10.1111/nph.13025
Zheng, 2014, Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow, FEMS Microbiol. Ecol., 89, 594, 10.1111/1574-6941.12361
Zhou, 2019, Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels, Sci. Total Environ., 651, 2281, 10.1016/j.scitotenv.2018.09.336