Plant calcium oxalate crystal formation, function, and its impact on human health

Paul A. Nakata1
1USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmed A K, Johnson K A (2000). The effect of the ammonium: nitrate nitrogen ration, total nitrogen, salinity (NaCl) and calcium on oxalate levels of Tetragonia tetragonioides Pallas. Kunz. J Hortic Sci Biotechnol, 75: 533–538

Arnott H J, Pautard F G E (1970). Calcification in plants. In: Biological Calcification: Cellular and Molecular Aspects (Schraer H, Ed.). New York: Appleton-Century-Crofts, 375–446

Assailly A (1954). Sur les rapports de l’oxalate de chaux et de l’amidon. Cr Acad Sci D, 238: 1902–1904

Barnabas A D, Arnott H J (1990). Calcium oxalate crystal formation in the bean (Phaseolus vulgaris L.) seed coat. Bot Gaz, 151(3): 331–341

Borchert R (1985). Calcium-induced patterns of calcium-oxalate crystals in isolated leaflets of Gleditsia triacanthos L. and Albizia julibrissin Durazz. Planta, 165(3): 301–310

Borchert R (1986). Calcium acetate induces calcium uptake and formation of calcium-oxalate crystals in isolated leaflets of Gleditsia tracanthos L. Planta, 168(4): 571–578

Bouropoulos N, Weiner S, Addadi L (2001). Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal-associated macromolecules. Chemistry, 7(9): 1881–1888

Calmes J (1969). Contribution a l’etude du metabolisme de l’acide oxalique chez la Vigne vierge (Parthenocissus tricuspidata Planchon). Cr Acad Sci D, 269(6): 704–707

Calmes J, Carles J (1970). La repartition et l’evolution des cristaux d’oxalate de calcium dans les tissus de vigne vierge au cours d’un cycle de vegetation. B Soc Bot Fr, 117(5/6): 189–198

Catherwood D J, Savage G P, Mason S M, Scheffer J J C, Douglas J A (2007). Oxalate content of cormels of Japanese taro (Colocasia esculenta (L.) Schott) and the effect of cooking. J Food Compost Anal, 20(3–4): 147–151

Choi Y E, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001). Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta, 213(1): 45–50

Coté G G (2009). Diversity and distribution of idioblasts producing calcium oxalate crystals in Dieffenbachia seguine (Araceae). Am J Bot, 96(7): 1245–1254

Crofts A J, Leborgne-Castel N, Hillmer S, Robinson D G, Phillipson B, Carlsson L E, Ashford D A, Denecke J (1999). Saturation of the endoplasmic reticulum retention machinery reveals anterograde bulk flow. Plant Cell, 11(11): 2233–2248

De Yoreo J J, Qiu S R, Hoyer J R (2006). Molecular modulation of calcium oxalate crystallization. Am J Physiol Renal Physiol, 291(6): F1123–F1132

Franceschi V R (1989). Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma, 148(2–3): 130–137

Franceschi V R, Horner H T Jr (1979). Use of Psychotria puncata callus in study of calcium oxalate crystal idioblast formation. Z Pflanzenphysiol, 67: 61–75

Franceschi V R, Horner H T Jr (1980). Calcium oxalate crystals in plants. Bot Rev, 46(4): 361–427

Franceschi V R, Li X, Zhang D, Okita T W (1993). Calsequestrinlike calcium-binding protein is expressed in calcium-accumulating cells of Pistia stratiotes. Proc Natl Acad Sci USA, 90(15): 6986–6990

Franceschi V R, Loewus F A (1995). Oxalate biosynthesis and function in plants and fungi. In: Calcium Oxalate in Biological Systems (Khan S R Ed.). Boca Raton: CRC Press, 113–130

Franceschi V R, Nakata PA (2005). Calcium oxalate in plants: formation and function. Annu Rev Plant Biol, 56(1): 41–71

Franceschi V R, Schueren A M (1986). Incorporation of strontium into plant calcium oxalate crystals. Protoplasma, 130(2–3): 199–205

Franceschi V R, Tarlyn N M (2002). L-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiol, 130(2): 649–656

Frank E, Jensen WA (1970). On the formation of the pattern of crystal idiobalsts in Canavalia ensiformis DC. IV. The fine structure of the crystal cells. Planta, 95: 202–217

Frey-Wyssling A (1981). Crystallography of the two hydrates of crystalline calcium oxalate in plants. Am J Bot, 68(1): 130–141

Furuhashi T, Schwarzinger C, Miksik I, Smrz M, Beran A (2009). Molluscan shell evolution with review of shell calcification hypothesis. Comp Biochem Physiol B Biochem Mol Biol, 154(3): 351–371

Gallaher R N (1975). The occurrence of calcium in plant tissue as crystals of calcium oxalate. Commun Soil Sci Plan, 6(3): 315–330

Gélinas B, Seguin P (2007). Oxalate in grain amaranth. J Agric Food Chem, 55(12): 4789–4794

Green M A, Fry S C (2005). Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature, 433(7021): 83–87

Guo Z, Tan H, Zhu Z, Lu S, Zhou B (2005). Effect of intermediates on ascorbic acid and oxalate biosynthesis of rice and in relation to its stress resistance. Plant Physiol Biochem, 43(10–11): 955–962

Hartl W P, Klapper H, Barbier B, Ensikat H J, Dronskowski R, Müller P, Ostendorp G, Tye A, Bauer R, Barthlott W (2007). Diversity of calcium oxalate crystals in Cactaceae. Can J Bot, 85(5): 501–517

Heaney R P, Recker R R, Hinders S M (1988). Variability of calcium absorption. Am J Clin Nutr, 47(2): 262–264

Heaney R P, Weaver C M (1989). Oxalate: effect on calcium absorbability. Am J Clin Nutr, 50(4): 830–832

Heaney R P, Weaver C M (1990). Calcium absorption from kale. Am J Clin Nutr, 51(4): 656–657

Hodgkinson A (1977). Oxalic Acid Biology and Medicine. Academic Press: New York

Holmes R P, Goodman H O, Assimos D G (1995). Dietary oxalate and its intestinal absorption. Scanning Microsc, 9(4): 1109–1118, discussion 1118–1120

Holmes R P, Goodman H O, Assimos D G (2001). Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int, 59(1): 270–276

Horner H T, Kausch A P, Wagner B L (2000). Ascorbic Acid: A precursor of oxalate in crystal idioblasts of Yucca Torreyi in liquid root culture. Int J Plant Sci, 161(6): 861–868

Horner H T, Wagner B L (1980). The association of druse crystals with the developing stomium of Capsicum annuum (Solanaceae) anthers. Am J Bot, 67(9): 1347–1360

Horner H T, Wagner B L (1995). Calcium oxalate formation in higher plants. In: Calcium Oxalate in Biological Systems. (Khan S R Ed.). Boca Raton: CRC Press, Florida, 53–72

Hudgins J W, Krekling T, Franceschi V R (2003). Distribution of calcium oxalate crystals in the secondary phloem of conifers: a constitutive defense mechanism? New Phytol, 159(3): 677–690

Ilarslan H, Palmer R G, Horner H T (2001). Calcium oxalate crystals in developing seeds of soybean. Ann Bot (Lond), 88(2): 243–257

Ji XM, Peng X X (2005). Oxalate accumulation as regulated by nitrogen forms and its relationship to photosynthesis in rice (Oryza sativa L.). J Int Plant Biol, 47(7): 831–838

Jou Y, Wang Y, Yen H E (2007). Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. Funct Plant Biol, 34(4): 353–359

Katayama H, Fujibayashi Y, Nagaoka S, Sugimura Y (2007). Cell wall sheath surrounding calcium oxalate crystals in mulberry idioblasts. Protoplasma, 231(3–4): 245–248

Kausch A P, Horner H T (1984). Differentiation of raphide crystal idioblasts in isolated root cultures of Yucca torreyi (Agavaceae). Can J Bot, 62(7): 1474–1484

Kausch A P, Horner H T (1985). Absence of CeCl3-detectable peroxisomal glycolate-oxidase activity in developing raphide crystal idioblasts in leaves of Psychotria punctata Vatke and roots of Yucca torreyi L. Planta, 164(1): 35–43

Keates S E, Tarlyn N M, Loewus F A, Franceschi V R (2000). LAscorbic acid and L-galactose are sources for oxalic acid and calcium oxalate in Pistia stratiotes. Phytochemistry, 53(4): 433–440

Kochian L V (1995). Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol, 46(1): 237–260

Korth K L, Doege S J, Park S H, Goggin F L, Wang Q, Gomez S K, Liu G, Jia L, Nakata P A (2006). Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol, 141(1): 188–195

Kostman T A, Franceschi V R (2000). Cell and calcium oxalate crystal growth is coordinated to achieve high-capacity calcium regulation in plants. Protoplasma, 214(3–4): 166–179

Kostman T A, Franceschi V R, Nakata P A (2003). Endoplasmic reticulum sub-compartments are involved in calcium sequestration within raphide crystal idioblasts of Pistia stratiotes L. Plant Sci, 165(1): 205–212

Kostman T A, Koscher J R (2003). L-galactono-gamma-lactone dehydrogenase is present in calcium oxalate crystal idioblasts of two plant species. Plant Physiol Biochem, 41(3): 201–206

Kostman T A, Tarlyn N M, Franceschi V R (2007). Autoradiography utilising labelled ascorbic acid reveals biochemical and morphological details in diverse calcium oxalate crystal-forming species. Funct Plant Biol, 34(4): 339–342

Kostman T A, Tarlyn N M, Loewus F A, Franceschi V R (2001). Biosynthesis of L-ascorbic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol, 125(2): 634–640

Kröger N, Poulsen N (2008). Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet, 42(1): 83–107

Kuo-Huang L L, Ku M S B, Franceschi V R (2007). Correlations between calcium oxalate crystals and photosynthetic activites in palisade cells of shade-adapted Peperomia glabella. Bot Stud (Taipei, Taiwan), 48(2): 155–164

Kuo-Huang L L, Zindler-Frank E (1998). Structure of crystal cells and influences of leaf development on crystal cell development and vice versa in Phaseolus vulgaris (Leguminosae). Bot Acta, 111: 337–345

Lazzaro M D, Thomson W W (1989). Ultrastructure of organic acid secreting trichomes of chickpea (Cicer arietinum). Can J Bot, 67(9): 2669–2677

Leeuwenhoek A (1675). Microscopical observations. Philos T Roy Soc, 10: 380–385

Lersten N, Horner H (2008a). Crystal macropatterns in leaves of Fagaceae and Nothofagaceae: a comparative study. Plant Syst Evol, 271(3–4): 239–253

Lersten N, Horner H (2008b). Subepidermal idioblasts and crystal macropattern in leaves of Ticodendron (Ticodendraceae). Plant Syst Evol, 276(3–4): 255–260

Lersten N, Horner H (2009). Crystal diversity and macropatterns in leaves of Oleaceae. Plant Syst Evol, 282(1–2): 87–102

Lersten N R, Horner H T (2000). Types of calcium oxalate crystals and macro patterns in leaves of Prunus (Rosaceae: Prunoideae). Plant Syst Evol, 224: 83–96

Lersten N R, Horner H T (2011). Unique calcium oxalate “duplex” and “concretion” idioblasts in leaves of tribe Naucleeae (Rubiaceae). Am J Bot, 98(1): 1–11

Li X X, Franceschi V R (1990). Distribution of peroxisomes and glycolate metabolism in relation to calcium oxalate formation in Lemna minor L. Eur J Cell Biol, 51(1): 9–16

Li X X, Zhang D Z, Lynch-Holm V J, Okita T W, Franceschi V R (2003). Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells. Plant Physiol, 133(2): 549–559

Libert B (1987). Breeding a low-oxalate rhubarb (Rheum sp. L.). J Hortic Sci Biotechnol, 62(4): 523–529

Libert B, Franceschi V R (1987). Oxalate in crop plants. J Agric Food Chem, 35(6): 926–938

Loewus F (1999). Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry, 52(2): 193–210

Loewus F A, Wagner G, Yang J C (1975). Biosynthesis and metabolism of ascorbic acid in plants. Ann N YAcad Sci, 258(1 Second Confer): 7–23

Ma J F, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997a). Internal detoxification mechanism of Al in hydrangea. Plant Physiol, 113(4): 1033–1039

Ma J F, Ryan P R, Delhaize E (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci, 6(6): 273–278

Ma J F, Zheng S J, Matsumoto H, Hiradate S (1997b). Detoxifying aluminium with buckwheat. Nature, 390(6660): 569–570

Massey L K, Palmer R G, Horner H T (2001). Oxalate content of soybean seeds (Glycine max: Leguminosae), soyfoods, and other edible legumes. J Agric Food Chem, 49(9): 4262–4266

Mazen A M A (2004). Calcium oxalate deposits in leaves of Corchorus olitotius as related to accumulation of toxic metals. Russ J Plant Physiol, 51(2): 281–285

Mazen A M A, Zhang D Z, Franceschi V R (2004). Calcium oxalate formation in Lemna minor: physiological and ultrastructural aspects of high capacity calcium sequestration. New Phytol, 161(2): 435–448

McConn M M, Nakata PA (2002). Calcium oxalate crystal morphology mutants from Medicago truncatula. Planta, 215(3): 380–386

McConn M M, Nakata PA (2004). Oxalate reduces calcium availability in the pads of the prickly pear cactus through formation of calcium oxalate crystals. J Agric Food Chem, 52(5): 1371–1374

McNair J B (1932). The interrelation between substances in plants: essential oils and resins, cyanogen and oxalate. Am J Bot, 19(3): 255–271

Melino V J, Soole K L, Ford C M (2009). Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol, 9(1): 145

Molano-Flores B (2001). Herbivory and calcium concentrations affect calcium oxalate crystal formation in leaves of Sida (Malvaceae). Ann Bot (Lond), 88(3): 387–391

Monje P V, Baran E J (2002). Characterization of calcium oxalates generated as biominerals in cacti. Plant Physiol, 128(2): 707–713

Moreau A G, Savage G P (2009). Oxalate content of purslane leaves and the effect of combining them with yoghurt or coconut products. J Food Compost Anal, 22(4): 303–306

Morris J, Nakata P A, McConn M, Brock A, Hirschi K D (2007). Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate. Plant Mol Biol, 64(5): 613–618

Morrow A C, Dute R R (2002). Crystals associated with the intertracheid pit membrane of the woody fern Botrychium multifidum. Am Fern J, 92(1): 10–19

Nakata P A (2003). Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci, 164(6): 901–909

Nakata PA (2012). Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula. Plant Sci, 185–186(0): 246–249

Nakata P A, Kostman T A, Franceschi V R (2003). Calreticulin is enriched in the crystal idioblasts of Pistia stratiotes. Plant Physiol Biochem, 41(5): 425–430

Nakata P A, McConn M (2002). Sequential subtractive approach facilitates identification of differentially expressed genes. Plant Physiol Biochem, 40(4): 307–312

Nakata P A, McConn M M (2000). Isolation of Medicago truncatula mutants defective in calcium oxalate crystal formation. Plant Physiol, 124(3): 1097–1104

Nakata PA, McConn MM (2003a). Calcium oxalate crystal formation is not essential for growth of Medicago truncatula. Plant Physiol Biochem, 41(4): 325–329

Nakata P A, McConn M M (2003b). Influence of the calcium oxalate defective 4 (cod4) mutation on the growth, oxalate content, and calcium content of Medicago truncatula. Plant Sci, 164(4): 617–621

Nakata P A, McConn M M (2006). A genetic mutation that reduces calcium oxalate content increases calcium availability in Medicago truncatula. Funct Plant Biol, 33(7): 703–706

Nakata PA, McConn M M (2007a). Calcium oxalate content affects the nutritional availability of calcium from Medicago truncatula leaves. Plant Sci, 172(5): 958–961

Nakata PA, McConn M M (2007b). Genetic evidence for differences in the pathways of druse and prismatic calcium oxalate crystal formation in Medicago truncatula. Funct Plant Biol, 34(4): 332–338

Nakata P A, McConn M M (2007c). Isolated Medicago truncatula mutants with increased calcium oxalate crystal accumulation have decreased ascorbic acid levels. Plant Physiol Biochem, 45(3–4): 216–220

Nordin B E C, Hodgkinson A, Peacock M, Robertson W G (1979). Urinary tract calculi. In: Nephrology (Hamburger J, Crosnier J, Grunfeld J P, Eds). Wiley: New York and Paris, 1091

Nuss R F, Loewus F A (1978). Further studies on oxalic acid biosynthesis in oxalate-accumulating plants. Plant Physiol, 61(4): 590–592

Olszta M J, Cheng X, Jee S S, Kumar R, Kim Y Y, Kaufman M J, Douglas E P, Gower L B (2007). Bone structure and formation: A new perspective. Mater Sci Eng Rep, 58(3–5): 77–116

Oscarsson K V, Savage G P (2007). Composition and availability of soluble and insoluble oxalates in raw and cooked taro (Colocasia esculenta var. Schott) leaves. Food Chem, 101(2): 559–562

Park S H, Doege S J, Nakata P A, Korth K L (2009). Medicago truncatula-derived calcium oxalate crystals have a negative impact on chewing insect performance via their physical properties. Entomol Exp Appl, 131(2): 208–215

Parsons H T, Fry S C (2012). Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions. Phytochemistry, 75(0): 41–49

Parsons H T, Yasmin T, Fry S C (2011). Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem J, 440(3): 375–383

Pennisi S V, McConnell D B (2001). Inducible calcium sinks and preferential calcium allocation in leaf primordia of Dracaena sanderiana Hort. Sander ex M.T. Mast. (Dracaenaceae). HortScience, 36: 1187–1191

Pennisi S V, McConnell D B, Gower L B, Kane M E, Lucansky T (2001). Intracellular calcium oxalate crystal structure in Dracaena sanderiana. New Phytol, 150(1): 111–120

Proietti S, Moscatello S, Famiani F, Battistelli A (2009). Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature. Plant Physiol Biochem, 47(8): 717–723

Prychid C J, Jabaily R S, Rudall P J (2008). Cellular ultrastructure and crystal development in Amorphophallus (Araceae). Ann Bot (Lond), 101(7): 983–995

Prychid C J, Rudall P J (1999). Calcium oxalate crystals in monocotyledons: A review of their structure and systematics. Ann Bot (Lond), 84(6): 725–739

Rahman M M, Ishii Y, Niimi M, Kawamura O (2010). Effect of application form of nitrogen on oxalate accumulation and mineral uptake by napiergrass (Pennisetum purpureum). Grassland Sci, 56(3): 141–144

Rinallo C, Modi G (2002). Content of oxalate in Actinidia deliciosa plants grown in nutrient solutions with different nitrogen forms. Biol Plant, 45(1): 137–139

Ritter M M C, Savage G P (2007). Soluble and insoluble oxalate content of nuts. J Food Compost Anal, 20(3–4): 169–174

Ruiz N, Ward D, Saltz S (2002a). Calcium oxalate crystals in leaves of Pancratium sickenbergeri: constitutive or induced defense? Funct Ecol, 16(1): 99–105

Ruiz N, Ward D, Saltz S (2002b). Responses of Pancratium sickenbergeri to simulated bulb herbivory: combining defence and tolerance strategies. J Ecol, 90(3): 472–479

Ryall R L, Stapleton A M F (1995) Urinary macromolecules in calcium oxalate stone and crystal matrix: good, bad, or indifferent? In: Calcium oxalate in biological systems (Kahn S R, Ed.). CRC Press, Inc.: Boca Raton, 265–290

Ryan P R, Delhaize E, Jones D L (2001). Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol, 52(1): 527–560

Saito K, Ohmoto J, Kuriha N (1997). Incorporation of 18O into oxalic, Lthreonic and L-tartaric acids during cleavage of L-ascorbic and 5-keto-D-gluconic acids in plants. Phytochemistry, 44(5): 805–809

Saltz S, Ward D (2000). Responding to a three-pronged attack: desert lilies subject to herbivory by dorcas gazelles. Plant Ecol, 148(2): 127–138

Savage G P, Mårtensson L, Sedcole J R (2009). Composition of oxalates in baked taro (Colocasia esculenta var. Schott) leaves cooked alone or with additions of cows milk or coconut milk. J Food Compost Anal, 22(1): 83–86

Savage G P, Vanhanen L, Mason S M, Ross A B (2000). Effect of cooking on the soluble and insoluble oxalate content of some New Zealand foods. J Food Compost Anal, 13(3): 201–206

Siener R, Hönow R, Seidler A, Voss S, Hesse A (2006a). Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chem, 98(2): 220–224

Siener R, Hönow R, Voss S, Seidler A, Hesse A (2006b). Oxalate content of cereals and cereal products. J Agric Food Chem, 54(8): 3008–3011

Smith K T, Shortle W C, Connolly J H, Minocha R, Jellison J (2009). Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce. Environ Exp Bot, 67(1): 277–283

Sugiyama N, Okutani I (1996). Relationship between nitrate reduction and oxalate synthesis in spinach leaves. J Plant Physiol, 149(1–2): 14–18

Taylor G J (1991). Current views of the aluminum stress response; the physiological basis of tolerance. Curr Top Plant Biochem Physiol, 10: 57–93

Thongboonkerd V, Semangoen T, Chutipongtanate S (2006). Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature. Clin Chim Acta, 367(1–2): 120–131

Thurston E L (1976). Morphology, fine structure and ontogeny of the stinging emergence of Tragia ramosa and T. saxicola (Euphorbiaceae). Am J Bot, 63(6): 710–718

Tillman-Sutela E, Kauppi A (1999). Calcium oxalate crystals in the mature seeds of Norway spruce, Picea abies (L.) Karst. Trees (Berl), 13(3): 131–137

Volk G M, Lynch-Holm V J, Kostman T A, Goss L J, Franceschi V R (2002). The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol, 4(1): 34–45

Wagner G, Loewus F (1973). The biosynthesis of (+)-tartaric acid in Pelargonium crispum. Plant Physiol, 52(6): 651–654

Ward D, Spiegel M, Saltz S (1997). Gazelle herbivory and interpopulation differences in calcium oxalate content of leaves of a desert lilly. J Chem Ecol, 23(2): 333–346

Weaver C M, Martin B R, Ebner J S, Krueger C A (1987). Oxalic acid decreases calcium absorption in rats. J Nutr, 117(11): 1903–1906

Webb M A (1999). Cell-mediated crystallization of calcium oxalate in plants. Plant Cell, 11(4): 751–761

Webb M A, Arnott H J (1981). An ultrastructural study of druse crystals in okra cotyledons. Scan Electron Microsc, 3: 285–292

Webb M A, Arnott H J (1983). Inside plant crystals: a study of the noncrystalline core in druses of Vitis vinifera endosperm. Scan Electron Microsc, IV: 1759–1770

Webb M A, Cavaletto J M, Carpita N C, Lopez L E, Arnott H J (1995). The intravacuolar organic matrix associated with calcium oxalate crystals in leaves of Vitis. Plant J, 7(4): 633–648

Weiner S, Addadi L (1991). Acidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci, 16(7): 252–256

Xu HW, Ji X M, He Z H, ShiW P, Zhu G H, Niu J K, Li B S, Peng X X (2006). Oxalate accumulation and regulation is independent of glycolate oxidase in rice leaves. J Exp Bot, 57(9): 1899–1908

Yang J C, Loewus F A (1975). Metabolic conversion of L-ascorbic acid in oxalate-accumulating plants. Plant Physiol, 56(2): 283–285

Yang Y Y, Jung J Y, Song W Y, Suh H S, Lee Y (2000). Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol, 124(3): 1019–1026

Yu L, Jiang J, Zhang C, Jiang L, Ye N, Lu Y, Yang G, Liu E, Peng C, He Z, Peng X (2010). Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. J Exp Bot, 61(6): 1625–1634

Zindler-Frank E (1975). On the formation of the pattern of crystal idioblasts in Canavalia ensiformis D.C.: VII. Calcium and oxalate content of the leaves in dependence of calcium nutrition. Z Pflanzenphysiol, 77: 80–85

Zindler-Frank E (1976). Oxalate biosynthesis in relation to photosynthetic pathways and plant productivity: a survey. Z Pflanzenphysiol, 80: 1–13

Zindler-Frank E (1987) Calcium oxalate in legumes. In: Advances in Legume Systematics (Stirton E, Ed.)Royal Botanic Gardens: Kew, UK, 279–316

Zindler-Frank E (1991). Calcium oxalate crystal formation and growth in two legume species as altered by strontium. Bot Acta, 104: 229–232

Zindler-Frank E, Honow R, Hesse A (2001). Calcium and oxalate content of the leaves of Phaseolus vulgaris at different calcium supply in relation to calcium oxalate crystal formation. J Plant Physiol, 158(2): 139–144