Plant Polyphenols as Neuroprotective Agents in Parkinson’s Disease Targeting Oxidative Stress
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dexter D.T.; Jenner P.; Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 2013,62,132-144
Pringsheim T.; Jette N.; Frolkis A.; Steeves T.D.; The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 2014,29(13),1583-1590
Obeso J.A.; Rodriguez-Oroz M.C.; Goetz C.G.; Missing pieces in the Parkinson’s disease puzzle. Nat Med 2010,16(6),653-661
Baradaran N.; Tan S.N.; Liu A.; Parkinson’s disease rigidity: relation to brain connectivity and motor performance. Front Neurol 2013,4,67
Vervoort G.; Bengevoord A.; Nackaerts E.; Heremans E.; Vandenberghe W.; Nieuwboer A.; Distal motor deficit contributions to postural instability and gait disorder in Parkinson’s disease. Behav Brain Res 2015,287,1-7
Chaudhuri K.R.; Schapira A.H.V.; Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 2009,8(5),464-474
Plowman E.K.; Kleim J.A.; Behavioral and neurophysiological correlates of striatal dopamine depletion: a rodent model of Parkinson’s disease. J Commun Disord 2011,44(5),549-556
Dickson D.W.; Braak H.; Duda J.E.; Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 2009,8(12),1150-1157
Gerfen C.R.; Surmeier D.J.; Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 2011,34,441-466
Luk K.C.; Kehm V.; Carroll J.; Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012,338(6109),949-953
Del Tredici K.; Duda J.E.; Peripheral Lewy body pathology in Parkinson’s disease and incidental Lewy body disease: four cases. J Neurol Sci 2011,310(1-2),100-106
Tong J.; Wong H.; Guttman M.; Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain 2010,133(Pt 1),172-188
Moore D.J.; West A.B.; Dawson V.L.; Dawson T.M.; Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 2005,28,57-87
Büeler H.; Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 2009,218(2),235-246
Gorell J.M.; Johnson C.C.; Rybicki B.A.; Peterson E.L.; Richardson R.J.; The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 1998,50(5),1346-1350
Schapira A.H.; Jenner P.; Etiology and pathogenesis of Parkinson’s disease. Mov Disord 2011,26(6),1049-1055
Noyce A.J.; Bestwick J.P.; Silveira-Moriyama L.; Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 2012,72(6),893-901
Langston J.W.; Ballard P.; Tetrud J.W.; Irwin I.; Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983,219(4587),979-980
Tanner C.M.; Kamel F.; Ross G.W.; Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 2011,119(6),866-872
Silva B.A.; Breydo L.; Fink A.L.; Uversky V.N.; Agrochemicals, α-synuclein, and Parkinson’s disease. Mol Neurobiol 2013,47(2),598-612
Betarbet R.; Sherer T.B.; MacKenzie G.; Garcia-Osuna M.; Panov A.V.; Greenamyre J.T.; Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000,3(12),1301-1306
Cannon J.R.; Tapias V.; Na H.M.; Honick A.S.; Drolet R.E.; Greenamyre J.T.; A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 2009,34(2),279-290
Xicoy H.; Wieringa B.; Martens G.J.M.; The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener 2017,12(1),10
Jalewa J.; Sharma M.K.; Hölscher C.; Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in SH-SY5Y cells. J Neurochem 2016,139(1),55-67
Katzenschlager R.; Lees A.J.; Treatment of Parkinson’s disease: levodopa as the first choice. J Neurol 2002,249(Suppl. 2),II19-II24
Mallajosyula J.K.; Kaur D.; Chinta S.J.; MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One 2008,3(2)
Simola N.; Emerging drugs and targets for Parkinson’s disease 2014,61-82
Szökő É.; Tábi T.; Riederer P.; Vécsei L.; Magyar K.; Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson’s disease. J Neural Transm (Vienna) 2018,125(11),1735-1749
Cools R.; Barker R.A.; Sahakian B.J.; Robbins T.W.; L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia 2003,41(11),1431-1441
Ito D.; Amano T.; Sato H.; Fukuuchi Y.; Paroxysmal hypertensive crises induced by selegiline in a patient with Parkinson’s disease. J Neurol 2001,248(6),533-534
Li B.D.; Bi Z.Y.; Liu J.F.; Adverse effects produced by different drugs used in the treatment of Parkinson’s disease: A mixed treatment comparison. CNS Neurosci Ther 2017,23(10),827-842
Rascol O.; Brooks D.J.; Korczyn A.D.; De Deyn P.P.; Clarke C.E.; Lang A.E.; A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 2000,342(20),1484-1491
Fedorova T.; Logvinenko A.; Poleshchuk V.; Illarioshkin S.; The state of systemic oxidative stress during Parkinson’s disease. Neurochem J 2017,11,340-345
Di Matteo V.; Esposito E.; Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Curr Drug Targets CNS Neurol Disord 2003,2(2),95-107
Uttara B.; Singh A.V.; Zamboni P.; Mahajan R.T.; Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009,7(1),65-74
Almeida S.; Alves M.G.; Sousa M.; Oliveira P.F.; Silva B.M.; Are polyphenols strong dietary agents against neurotoxicity and neurodegeneration? Neurotox Res 2016,30(3),345-366
Pohl F.; Kong Thoo Lin P.; The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: in vitro, in vivo and clinical trials. Molecules 2018,23(12),23
Pandey K.B.; Rizvi S.I.; Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009,2(5),270-278
Melo A.; Monteiro L.; Lima R.M.; Oliveira D.M.; Cerqueira M.D.; El-Bachá R.S.; Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. Oxid Med Cell Longev 2011
Jellinger K.A.; Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 2010,14(3),457-487
Valencia A.; Morán J.; Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic Biol Med 2004,36(9),1112-1125
Dias V.; Junn E.; Mouradian M.M.; The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013,3(4),461-491
Kobayashi H.; Fukuhara K.; Tada-Oikawa S.; The mechanisms of oxidative DNA damage and apoptosis induced by norsalsolinol, an endogenous tetrahydroisoquinoline derivative associated with Parkinson’s disease. J Neurochem 2009,108(2),397-407
Goodwin J.; Nath S.; Engelborghs Y.; Pountney D.L.; Raised calcium and oxidative stress cooperatively promote alpha-synuclein aggregate formation. Neurochem Int 2013,62(5),703-711
Sanders L.H.; Timothy Greenamyre J.; Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic Biol Med 2013,62,111-120
Garbarino V.R.; Orr M.E.; Rodriguez K.A.; Buffenstein R.; Mechanisms of oxidative stress resistance in the brain: Lessons learned from hypoxia tolerant extremophilic vertebrates. Arch Biochem Biophys 2015,576,8-16
Duan W.; Zhu X.; Ladenheim B.; p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neurol 2002,52(5),597-606
Herbin M.; Simonis C.; Revéret L.; Dopamine modulates motor control in a specific plane related to support. PLoS One 2016,11(5)
Ershov P.V.; Ugrumov M.V.; Calas A.; Makarenko I.G.; Krieger M.; Thibault J.; Neurons possessing enzymes of dopamine synthesis in the mediobasal hypothalamus of rats. Topographic relations and axonal projections to the median eminence in ontogenesis. J Chem Neuroanat 2002,24(2),95-107
Nirenberg M.J.; Chan J.; Liu Y.; Edwards R.H.; Pickel V.M.; Ultrastructural localization of the vesicular monoamine transporter-2 in midbrain dopaminergic neurons: potential sites for somatodendritic storage and release of dopamine. J Neurosci 1996,16(13),4135-4145
Asanuma M.; Miyazaki I.; Ogawa N.; Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res 2003,5(3),165-176
Vergo S.; Johansen J.L.; Leist M.; Lotharius J.; Vesicular monoamine transporter 2 regulates the sensitivity of rat dopaminergic neurons to disturbed cytosolic dopamine levels. Brain Res 2007,1185,18-32
Chen L.; Ding Y.; Cagniard B.; Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 2008,28(2),425-433
Caudle W.M.; Richardson J.R.; Wang M.Z.; Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 2007,27(30),8138-8148
Mukda S.; Vimolratana O.; Govitrapong P.; Melatonin attenuates the amphetamine-induced decrease in vesicular monoamine transporter-2 expression in postnatal rat striatum. Neurosci Lett 2011,488(2),154-157
Wasik A.; Romańska I.; Antkiewicz-Michaluk L.; 1-Benzyl-1,2,3,4-tetrahydroisoquinoline, an endogenous parkinsonism-inducing toxin, strongly potentiates MAO-dependent dopamine oxidation and impairs dopamine release: ex vivo and in vivo neurochemical studies. Neurotox Res 2009,15(1),15-23
Uhl G.R.; Li S.; Takahashi N.; The VMAT2 gene in mice and humans: amphetamine responses, locomotion, cardiac arrhythmias, aging, and vulnerability to dopaminergic toxins. FASEB J 2000,14(15),2459-2465
Pifl C.; Rajput A.; Reither H.; Is Parkinson’s disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum. J Neurosci 2014,34(24),8210-8218
Basma A.N.; Morris E.J.; Nicklas W.J.; Geller H.M.; L-dopa cytotoxicity to PC12 cells in culture is via its autoxidation. J Neurochem 1995,64(2),825-832
Jinsmaa Y.; Florang V.R.; Rees J.N.; Dopamine-derived biological reactive intermediates and protein modifications: Implications for Parkinson’s disease. Chem Biol Interact 2011,192(1-2),118-121
Doorn J.A.; Florang V.R.; Schamp J.H.; Vanle B.C.; Aldehyde dehydrogenase inhibition generates a reactive dopamine metabolite autotoxic to dopamine neurons. Parkinsonism Relat Disord 2014,20(Suppl. 1),S73-S75
Cohen G.; Oxidative stress, mitochondrial respiration, and Parkinson’s disease. Ann N Y Acad Sci 2000,899,112-120
Anderson D.G.; Mariappan S.V.; Buettner G.R.; Doorn J.A.; Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone. J Biol Chem 2011,286(30),26978-26986
Rabinovic A.D.; Lewis D.A.; Hastings T.G.; Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience 2000,101(1),67-76
Müller T.; Muhlack S.; Cysteinyl-glycine reduction as marker for levodopa-induced oxidative stress in Parkinson’s disease patients. Mov Disord 2011,26(3),543-546
Post M.R.; Lieberman O.J.; Mosharov E.V.; Can interactions between α-synuclein, dopamine and calcium explain selective neurodegeneration in Parkinson’s Disease? Front Neurosci 2018,12,161
Sulzer D.; Zecca L.; Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res 2000,1(3),181-195
Beard J.; Iron deficiency alters brain development and functioning. J Nutr 2003,133(5)(Suppl. 1),1468S-1472S
Unger E.L.; Wiesinger J.A.; Hao L.; Beard J.L.; Dopamine D2 receptor expression is altered by changes in cellular iron levels in PC12 cells and rat brain tissue. J Nutr 2008,138(12),2487-2494
Wilkinson N.; Pantopoulos K.; The IRP/IRE system in vivo: insights from mouse models. Front Pharmacol 2014,5,176
Mills E.; Dong X.P.; Wang F.; Xu H.; Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med Chem 2010,2(1),51-64
Haacke E.M.; Cheng N.Y.C.; House M.J.; Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005,23(1),1-25
Sian-Hülsmann J.; Mandel S.; Youdim M.B.; Riederer P.; The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem 2011,118(6),939-957
Dexter D.T.; Carayon A.; Javoy-Agid F.; Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 1991,114(Pt 4),1953-1975
Morawski M.; Meinecke C.; Reinert T.; Determination of trace elements in the human substantia nigra. Nucl Instrum Methods Phys Res B 2005,231,224-228
Kaur D.; Yantiri F.; Rajagopalan S.; Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 2003,37(6),899-909
Youdim MBH, Fridkin M, Zheng H. Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson’s disease and other neurodegenerative diseases. Basic neurosciences and genetics, Parkinson's disease and allied conditions, Alzheimer's disease and related disorders, biological psychiatry. 2004; 111: 1455-71
Ayton S.; Lei P.; Adlard P.A.; Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson’s disease. Mol Neurodegener 2014,9,27
Weinreb O.; Mandel S.; Youdim M.B.H.; Amit T.; Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radic Biol Med 2013,62,52-64
Lee D.W.; Andersen J.K.; Iron elevations in the aging Parkinsonian brain: a consequence of impaired iron homeostasis? J Neurochem 2010,112(2),332-339
Carroll C.B.; Zeissler M.L.; Chadborn N.; Changes in iron-regulatory gene expression occur in human cell culture models of Parkinson’s disease. Neurochem Int 2011,59(1),73-80
Kalivendi S.V.; Kotamraju S.; Cunningham S.; Shang T.; Hillard C.J.; Kalyanaraman B.; 1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem J 2003,371(Pt 1),151-164
Bokare A.D.; Choi W.; Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 2014,275,121-135
LaVaute T.; Smith S.; Cooperman S.; Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 2001,27(2),209-214
Salvatore M.F.; Fisher B.; Surgener S.P.; Gerhardt G.A.; Rouault T.; Neurochemical investigations of dopamine neuronal systems in iron-regulatory protein 2 (IRP-2) knockout mice. Brain Res Mol Brain Res 2005,139(2),341-347
Febbraro F.; Giorgi M.; Caldarola S.; Loreni F.; Romero-Ramos M.; α-Synuclein expression is modulated at the translational level by iron. Neuroreport 2012,23(9),576-580
Zhou Z.D.; Tan E.K.; Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener 2017,12(1),75
Ayala A.; Muñoz M.F.; Argüelles S.; Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014
Sánchez Campos S.; Rodríguez Diez G.; Oresti G.M.; Salvador G.A.; Dopaminergic neurons respond to iron-induced oxidative stress by modulating lipid acylation and deacylation cycles. PLoS One 2015,10(6)
Bertrand R.L.; Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events. Med Hypotheses 2017,101,69-74
Shamoto-Nagai M.; Maruyama W.; Akao Y.; Neuromelanin inhibits enzymatic activity of 26S proteasome in human dopaminergic SH-SY5Y cells. J Neural Transm (Vienna) 2004,111(10-11),1253-1265
Shamoto-Nagai M.; Maruyama W.; Hashizume Y.; In parkinsonian substantia nigra, α-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity. J Neural Transm (Vienna) 2007,114(12),1559-1567
Uversky V.N.; Li J.; Fink A.L.; Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 2001,276(47),44284-44296
Marengo B.; Nitti M.; Furfaro A.L.; Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxid Med Cell Longev 2016
Kim G.H.; Kim J.E.; Rhie S.J.; Yoon S.; The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 2015,24(4),325-340
He L.; He T.; Farrar S.; Ji L.; Liu T.; Ma X.; Antioxidants. Cell Physiol Biochem 2017,44(2),532-553
Aoyama K.; Watabe M.; Nakaki T.; Regulation of neuronal glutathione synthesis. J Pharmacol Sci 2008,108(3),227-238
Smeyne M.; Smeyne R.J.; Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 2013,62,13-25
Commandeur J.N.; Stijntjes G.J.; Vermeulen N.P.; Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol Rev 1995,47(2),271-330
Sian J.; Dexter D.T.; Lees A.J.; Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 1994,36(3),348-355
Pearce R, Owen A, Daniel S, Jenner P, Marsden C. Alterations in the distribution of glutathione in the substantia nigra in Parkinson's disease. Basic neurosciences and genetics, Parkinson's disease and allied conditions, Alzheimer's disease and related disorders, biological psychiatry. 1997; 104: 661-77.
Chinta S.J.; Kumar M.J.; Hsu M.; Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci 2007,27(51),13997-14006
Garrido M.; Tereshchenko Y.; Zhevtsova Z.; Taschenberger G.; Bähr M.; Kügler S.; Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons. Acta Neuropathol 2011,121(4),475-485
Mythri R.B.; Venkateshappa C.; Harish G.; Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res 2011,36(8),1452-1463
Venkateshappa C.; Harish G.; Mythri R.B.; Mahadevan A.; Bharath M.M.; Shankar S.K.; Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease. Neurochem Res 2012,37(2),358-369
Ramsey C.P.; Glass C.A.; Montgomery M.B.; Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 2007,66(1),75-85
Hybertson B.M.; Gao B.; Bose S.K.; McCord J.M.; Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 2011,32(4-6),234-246
de Vries H.E.; Witte M.; Hondius D.; Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med 2008,45(10),1375-1383
Lastres-Becker I.; Ulusoy A.; Innamorato N.G.; α-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease. Hum Mol Genet 2012,21(14),3173-3192
Subramaniam S.R.; Chesselet M.F.; Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 2013,106-107,17-32
Hauser D.N.; Hastings T.G.; Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 2013,51,35-42
Mann V.M.; Cooper J.M.; Daniel S.E.; Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 1994,36(6),876-881
Parker W.D.; Parks J.K.; Swerdlow R.H.; Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 2008,1189,215-218
Valsecchi F.; Koopman W.J.; Manjeri G.R.; Rodenburg R.J.; Smeitink J.A.; Willems P.H.; Complex I disorders: causes, mechanisms, and development of treatment strategies at the cellular level. Dev Disabil Res Rev 2010,16(2),175-182
Li N.; Ragheb K.; Lawler G.; Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 2003,278(10),8516-8525
Przedborski S.; Tieu K.; Perier C.; Vila M.; MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 2004,36(4),375-379
Dranka B.P.; Zielonka J.; Kanthasamy A.G.; Kalyanaraman B.; Alterations in bioenergetic function induced by Parkinson’s disease mimetic compounds: lack of correlation with superoxide generation. J Neurochem 2012,122(5),941-951
Zawada W.M.; Banninger G.P.; Thornton J.; Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation 2011,8,129
Votyakova T.V.; Reynolds I.J.; Ca-induced permeabilization promotes free radical release from rat brain mitochondria with partially inhibited complex I. J Neurochem 2005,93(3),526-537
Palacino J.J.; Sagi D.; Goldberg M.S.; Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004,279(18),18614-18622
Gegg M.E.; Cooper J.M.; Schapira A.H.; Taanman J.W.; Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS One 2009,4(3)
Gautier C.A.; Kitada T.; Shen J.; Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci USA 2008,105(32),11364-11369
Ziviani E.; Tao R.N.; Whitworth A.J.; Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA 2010,107(11),5018-5023
Jiang H.; Ren Y.; Zhao J.; Feng J.; Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet 2004,13(16),1745-1754
Wood-Kaczmar A.; Gandhi S.; Yao Z.; PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS One 2008,3(6)
Amo T.; Sato S.; Saiki S.; Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects. Neurobiol Dis 2011,41(1),111-118
Amo T.; Saiki S.; Sawayama T.; Sato S.; Hattori N.; Detailed analysis of mitochondrial respiratory chain defects caused by loss of PINK1. Neurosci Lett 2014,580,37-40
Deas E.; Wood N.W.; Plun-Favreau H.; Mitophagy and Parkinson’s disease: the PINK1-parkin link. Biochim Biophys Acta 2011,1813(4),623-633
Vives-Bauza C.; Zhou C.; Huang Y.; PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 2010,107(1),378-383
Narendra D.P.; Jin S.M.; Tanaka A.; PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010,8(1)
de Vries R.L.A.; Przedborski S.; Mitophagy and Parkinson’s disease: be eaten to stay healthy. Mol Cell Neurosci 2013,55,37-43
Michel P.P.; Hirsch E.C.; Hunot S.; Understanding Dopaminergic Cell Death Pathways in Parkinson Disease. Neuron 2016,90(4),675-691
Kelsey N.A.; Wilkins H.M.; Linseman D.A.; Nutraceutical antioxidants as novel neuroprotective agents. Molecules 2010,15(11),7792-7814
Ebrahimi A.; Schluesener H.; Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev 2012,11(2),329-345
Pérez-Jiménez J.; Neveu V.; Vos F.; Scalbert A.; Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur J Clin Nutr 2010,64(Suppl. 3),S112-S120
Shahpiri Z.; Bahramsoltani R.; Hosein Farzaei M.; Farzaei F.; Rahimi R.; Phytochemicals as future drugs for Parkinson’s disease: a comprehensive review. Rev Neurosci 2016,27(6),651-668
Esposito E.; Rotilio D.; Di Matteo V.; Di Giulio C.; Cacchio M.; Algeri S.; A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 2002,23(5),719-735
DeFeudis F.V.; Drieu K.; Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr Drug Targets 2000,1(1),25-58
Pardon M.C.; Joubert C.; Perez-Diaz F.; Christen Y.; Launay J.M.; Cohen-Salmon C.; In vivo regulation of cerebral monoamine oxidase activity in senescent controls and chronically stressed mice by long-term treatment with Ginkgo biloba extract (EGb 761). Mech Ageing Dev 2000,113(3),157-168
Rojas P.; Rojas C.; Ebadi M.; Montes S.; Monroy-Noyola A.; Serrano-García N.; EGb761 pretreatment reduces monoamine oxidase activity in mouse corpus striatum during 1-methyl-4-phenylpyridinium neurotoxicity. Neurochem Res 2004,29(7),1417-1423
Rojas P.; Garduño B.; Rojas C.; EGb761 blocks MPP+-induced lipid peroxidation in mouse corpus striatum. Neurochem Res 2001,26(11),1245-1251
Rojas P.; Ruiz-Sánchez E.; Rojas C.; Ogren S.O.; Ginkgo biloba extract (EGb 761) modulates the expression of dopamine-related genes in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Neuroscience 2012,223,246-257
Rojas P.; Serrano-García N.; Mares-Sámano J.J.; Medina-Campos O.N.; Pedraza-Chaverri J.; Ogren S.O.; EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: role of oxidative stress. Eur J Neurosci 2008,28(1),41-50
Checkoway H.; Powers K.; Smith-Weller T.; Franklin G.M.; Longstreth W.T.; Swanson P.D.; Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 2002,155(8),732-738
Hu G.; Bidel S.; Jousilahti P.; Antikainen R.; Tuomilehto J.; Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord 2007,22(15),2242-2248
Li F.J.; Ji H.F.; Shen L.; A meta-analysis of tea drinking and risk of Parkinson’s disease. Scientific World Journal 2012
Qi H.; Li S.; Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr Gerontol Int 2014,14(2),430-439
Mandel S.A.; Amit T.; Kalfon L.; Reznichenko L.; Youdim M.B.; Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins. J Nutr 2008,138(8),1578S-1583S
Levites Y.; Weinreb O.; Maor G.; Youdim M.B.; Mandel S.; Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001,78(5),1073-1082
Choi J.Y.; Park C.S.; Kim D.J.; Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology 2002,23(3),367-374
Kim J.S.; Kim J.M.; O JJ, Jeon BS. Inhibition of inducible nitric oxide synthase expression and cell death by (-)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J Clin Neurosci 2010,17(9),1165-1168
Xu Q.; Langley M.; Kanthasamy A.G.; Reddy M.B.; Epigallocatechin gallate has a neurorescue effect in a mouse model of parkinson disease. J Nutr 2017,147(10),1926-1931
Dai J.; Mumper R.J.; Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 2010,15(10),7313-7352
de Souza R.F.; De Giovani W.F.; Antioxidant properties of complexes of flavonoids with metal ions. Redox Rep 2004,9(2),97-104
van Acker S.A.; van den Berg D.J.; Tromp M.N.; Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 1996,20(3),331-342
Grinberg L.N.; Newmark H.; Kitrossky N.; Rahamim E.; Chevion M.; Rachmilewitz E.A.; Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochem Pharmacol 1997,54(9),973-978
Jomova K.; Vondrakova D.; Lawson M.; Valko M.; Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 2010,345(1-2),91-104
Mandel S.; Maor G.; Youdim M.B.; Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J Mol Neurosci 2004,24(3),401-416
Perron N.R.; Hodges J.N.; Jenkins M.; Brumaghim J.L.; Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorg Chem 2008,47(14),6153-6161
Mounsey R.B.; Teismann P.; Chelators in the treatment of iron accumulation in Parkinson’s disease. Int J Cell Biol 2012
Daniel S.; Limson J.L.; Dairam A.; Watkins G.M.; Daya S.; Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J Inorg Biochem 2004,98(2),266-275
Du X.X.; Xu H.M.; Jiang H.; Song N.; Wang J.; Xie J.X.; Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson’s disease. Neurosci Bull 2012,28(3),253-258
Dai M.C.; Zhong Z.H.; Sun Y.H.; Curcumin protects against iron induced neurotoxicity in primary cortical neurons by attenuating necroptosis. Neurosci Lett 2013,536,41-46
Gupta S.C.; Prasad S.; Kim J.H.; Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 2011,28(12),1937-1955
Khatri D.K.; Juvekar A.R.; Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson’s disease. Pharmacol Biochem Behav 2016,150-151,39-47
Harish G.; Venkateshappa C.; Mythri R.B.; Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: Implications for Parkinson’s disease. Bioorg Med Chem 2010,18(7),2631-2638
Dickinson D.A.; Iles K.E.; Zhang H.; Blank V.; Forman H.J.; Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J 2003,17(3),473-475
Jagatha B.; Mythri R.B.; Vali S.; Bharath M.M.; Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic Biol Med 2008,44(5),907-917
Pandareesh M.D.; Shrivash M.K.; Naveen Kumar H.N.; Misra K.; Srinivas Bharath M.M.; Curcumin Monoglucoside Shows Improved Bioavailability and Mitigates Rotenone Induced Neurotoxicity in Cell and Drosophila Models of Parkinson’s Disease. Neurochem Res 2016,41(11),3113-3128
Rojas C.; Rojas-Castaneda J.; Ruiz-Sanchez E.; Montes P.; Rojas P.; Antioxidant properties of a Ginkgo biloba leaf extract (EGb 761) in animal models of Alzheimer’s and Parkinson’s diseases. Curr Top Nutraceutical Res 2015,13,105
Tanaka K.; Galduróz R.F.; Gobbi L.T.; Galduróz J.C.; Ginkgo biloba extract in an animal model of Parkinson’s disease: a systematic review. Curr Neuropharmacol 2013,11(4),430-435
Ahmad M.; Saleem S.; Ahmad A.S.; Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. J Neurochem 2005,93(1),94-104
Tellone E.; Galtieri A.; Russo A.; Giardina B.; Ficarra S.; Resveratrol: A focus on several neurodegenerative diseases. Oxid Med Cell Longev 2015
Fukui M.; Choi H.J.; Zhu B.T.; Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death. Free Radic Biol Med 2010,49(5),800-813
Moldzio R.; Radad K.; Krewenka C.; Kranner B.; Duvigneau J.C.; Rausch W.D.; Protective effects of resveratrol on glutamate-induced damages in murine brain cultures. J Neural Transm (Vienna) 2013,120(9),1271-1280
Lagouge M.; Argmann C.; Gerhart-Hines Z.; Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006,127(6),1109-1122
Wu Y.; Li X.; Zhu J.X.; Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 2011,19(3),163-174
Lin T-K.; Chen S-D.; Chuang Y-C.; Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci 2014,15(1),1625-1646
Ferretta A.; Gaballo A.; Tanzarella P.; Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta 2014,1842(7),902-915
Mathieu L.; Lopes Costa A.; Le Bachelier C.; Resveratrol attenuates oxidative stress in mitochondrial Complex I deficiency: Involvement of SIRT3. Free Radic Biol Med 2016,96,190-198
Peng K, Tao Y, Zhang J, et al. Resveratrol regulates mitochondrial biogenesis and fission/fusion to attenuate rotenone-induced neurotoxicity. 2015; 2015
Boots A.W.; Haenen G.R.M.M.; Bast A.; Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 2008,585(2-3),325-337
Karuppagounder S.S.; Madathil S.K.; Pandey M.; Haobam R.; Rajamma U.; Mohanakumar K.P.; Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience 2013,236,136-148
Sharma D.R.; Wani W.Y.; Sunkaria A.; Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience 2016,324,163-176
Ay M.; Luo J.; Langley M.; Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J Neurochem 2017,141(5),766-782
Singh N.; Haldar S.; Tripathi A.K.; Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 2014,20(8),1324-1363
Kandinov B.; Giladi N.; Korczyn A.D.; Smoking and tea consumption delay onset of Parkinson’s disease. Parkinsonism Relat Disord 2009,15(1),41-46
Pasinetti G.M.; Wang J.; Ho L.; Zhao W.; Dubner L.; Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta 2015,1852(6),1202-1208
Colizzi C.; The protective effects of polyphenols on Alzheimer’s disease: A systematic review. Alzheimers Dement (N Y) 2018,5,184-196
Baum L.; Lam C.W.; Cheung S.K.; Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 2008,28(1),110-113
Turner R.S.; Thomas R.G.; Craft S.; A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015,85(16),1383-1391
Moussa C.; Hebron M.; Huang X.; Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 2017,14(1),1
Herrschaft H.; Nacu A.; Likhachev S.; Sholomov I.; Hoerr R.; Schlaefke S.; Ginkgo biloba extract EGb 761 in dementia with neuropsychiatric features: a randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 mg. J Psychiatr Res 2012,46(6),716-723
Ihl R.; Effects of Ginkgo biloba extract EGb 761 in dementia with neuropsychiatric features: review of recently completed randomised, controlled trials. Int J Psychiatry Clin Pract 2013,17(Suppl. 1),8-14
Maclennan K.M.; Darlington C.L.; Smith P.F.; The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol 2002,67(3),235-257
Napryeyenko O.; Sonnik G.; Tartakovsky I.; Efficacy and tolerability of Ginkgo biloba extract EGb 761 by type of dementia: analyses of a randomised controlled trial. J Neurol Sci 2009,283(1-2),224-229
Ringman J.M.; Frautschy S.A.; Teng E.; Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res Ther 2012,4(5),43
Gauthier S.; Schlaefke S.; Efficacy and tolerability of Ginkgo biloba extract EGb 761 in dementia: a systematic review and meta-analysis of randomized placebo-controlled trials. Clin Interv Aging 2014,9,2065-2077
Savaskan E, Mueller H, Hoerr R, von Gunten A, Gauthier S. Treatment effects of Ginkgo biloba extract EGb 761® on the spectrum of behavioral and psychological symptoms of dementia: metaanalysis of randomized controlled trials. 2018; 285-93.
Pagano E.; Romano B.; Izzo A.A.; Borrelli F.; The clinical efficacy of curcumin-containing nutraceuticals: An overview of systematic reviews. Pharmacol Res 2018,134,79-91
Lewandowska U.; Szewczyk K.; Hrabec E.; Janecka A.; Gorlach S.; Overview of metabolism and bioavailability enhancement of polyphenols. J Agric Food Chem 2013,61(50),12183-12199
Molino S.; Dossena M.; Buonocore D.; Polyphenols in dementia: From molecular basis to clinical trials. Life Sci 2016,161,69-77
Barnes S.; Prasain J.; D’Alessandro T.; The metabolism and analysis of isoflavones and other dietary polyphenols in foods and biological systems. Food Funct 2011,2(5),235-244
Figueira I.; Menezes R.; Macedo D.; Costa I.; Dos Santos C.N.; Polyphenols Beyond Barriers: A Glimpse into the Brain. Curr Neuropharmacol 2017,15(4),562-594
Youdim K.A.; Shukitt-Hale B.; Joseph J.A.; Flavonoids and the brain: interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 2004,37(11),1683-1693
Renaud J.; Martinoli M.G.; Considerations for the Use of Polyphenols as Therapies in neurodegenerative diseases. Int J Mol Sci 2019,20(8),1883
Kujawska M.; Jodynis-Liebert J.; Polyphenols in parkinson’s disease: A systematic review of in vivo studies. Nutrients 2018,10(5),642
Modi G.; Pillay V.; Choonara Y.E.; Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci 2010,1184,154-172
Sandhir R.; Yadav A.; Sunkaria A.; Singhal N.; Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015,89,209-226
Wang Y.; Xu H.; Fu Q.; Ma R.; Xiang J.; Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in parkinsonian rats. J Neurol Sci 2011,304(1-2),29-34
da Rocha Lindner G.; Bonfanti Santos D.; Colle D.; Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine (Lond) 2015,10(7),1127-1138
Palle S.; Neerati P.; Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 2018,391(4),445-453
Pandita D.; Kumar S.; Poonia N.; Lather V.; Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int 2014,62,1165-1174
Yadav A.; Sunkaria A.; Singhal N.; Sandhir R.; Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO-1 pathway. Neurochem Int 2018,112,239-254
Bollimpelli V.S.; Kumar P.; Kumari S.; Kondapi A.K.; Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem Int 2016,95,37-45
Kanai M.; Imaizumi A.; Otsuka Y.; Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol 2012,69(1),65-70
Dos Santos M.C.T.; Scheller D.; Schulte C.; Evaluation of cerebrospinal fluid proteins as potential biomarkers for early stage Parkinson’s disease diagnosis. PLoS One 2018,13(11)
Miller D.B.; O’Callaghan J.P.; Biomarkers of Parkinson’s disease: present and future. Metabolism 2015,64(3)(Suppl. 1),S40-S46
Hall S.; Surova Y.; Öhrfelt A.; Zetterberg H.; Lindqvist D.; Hansson O.; CSF biomarkers and clinical progression of Parkinson disease. Neurology 2015,84(1),57-63
Mollenhauer B.; Caspell-Garcia C.J.; Coffey C.S.; Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls. Neurology 2017,89(19),1959-1969
Sharma S.; Moon C.S.; Khogali A.; Biomarkers in Parkinson’s disease (recent update). Neurochem Int 2013,63(3),201-229
Ide K.; Yamada H.; Umegaki K.; Lymphocyte vitamin C levels as potential biomarker for progression of Parkinson’s disease. Nutrition 2015,31(2),406-408
He R.; Yan X.; Guo J.; Xu Q.; Tang B.; Sun Q.; Recent advances in biomarkers for parkinson’s disease. Front Aging Neurosci 2018,10,305
Lotankar S.; Prabhavalkar K.S.; Bhatt L.K.; Biomarkers for parkinson’s disease: recent advancement. Neurosci Bull 2017,33(5),585-597
Lin X.; Cook T.J.; Zabetian C.P.; DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci Rep 2012,2,954
Saito Y.; Oxidized DJ-1 as a possible biomarker of Parkinson’s disease. J Clin Biochem Nutr 2014,54(3),138-144
Shen L.; Ji H-F.; Low uric acid levels in patients with Parkinson’s disease: evidence from meta-analysis. BMJ Open 2013,3(11)
Wen M.; Zhou B.; Chen Y.H.; Serum uric acid levels in patients with Parkinson’s disease: A meta-analysis. PLoS One 2017,12(3)
Boots AW, Haenen GRMM, Bast A. Health effects of quercetin: From antioxidant to nutraceutical. 2008; 325-7.
Murakami A.; Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Arch Biochem Biophys 2014,557,3-10