Cấu trúc Cộng đồng Thực vật Dự đoán Hơn so với Đa dạng trong Chu trình Carbon ở Các Đầm Nước Ngọt

Wetlands - 2011
Rachel Schultz1,2, Sarah Andrews3, Lindsay O’Reilly3, Virginie Bouchard1, Serita Frey3
1School of Environment and Natural Resources, The Ohio State University, Columbus, USA
2Center of Earth and Environmental Science, SUNY Plattsburgh, Plattsburgh, USA
3Department of Natural Resources and the Environment, University of New Hampshire, Durham, USA

Tóm tắt

Những thay đổi trong sự cấu thành loài trên toàn cầu và sự mất mát đa dạng sinh học đã thúc đẩy việc điều tra kỹ lưỡng tầm quan trọng của đa dạng sinh học và cấu thành cộng đồng đối với chức năng của hệ sinh thái. Tuy nhiên, ít nghiên cứu đã khám phá mối quan hệ này ngoài các thí nghiệm kiểm soát. Trong nghiên cứu này, chúng tôi đã xem xét mối quan hệ giữa đa dạng thực vật, sản xuất sơ cấp và lượng khí mê-tan thoát ra trong các đầm nước ngọt thông qua một nghiên cứu hiện trường xuyên suốt các địa điểm và đánh giá tính áp dụng của các phát hiện từ thí nghiệm đối với các đầm tự nhiên. Bốn địa điểm đầm ở trung tâm Ohio (Mỹ) được chia thành hai cộng đồng thực vật, một cộng đồng chủ yếu có các loài vô tính và một cộng đồng chủ yếu có các loài không vô tính. Chúng tôi nhận thấy rằng sự đa dạng thực vật có mối tương quan tiêu cực với khối lượng sinh khối trên mặt đất trong cả cộng đồng có vô tính và không có vô tính. Tổng thể, cấu thành cộng đồng thực vật là yếu tố tiên đoán mạnh mẽ hơn sự đa dạng đối với các biến phản ứng, và trong một số trường hợp, là yếu tố tiên đoán mạnh mẽ hơn cả các yếu tố môi trường như hàm lượng chất hữu cơ trong đất, độ ẩm và pH. Do đó, cấu thành cộng đồng thực vật là một động lực quan trọng của chức năng hệ sinh thái trong các đầm trũng, vượt ra ngoài các yếu tố môi trường đã biết. Thêm vào đó, công trình của chúng tôi chỉ ra rằng các kết quả từ các nghiên cứu thí nghiệm về mối quan hệ giữa đa dạng, sinh khối và phát thải khí mê-tan không áp dụng được cho các hệ sinh thái đầm nước được bao gồm trong nghiên cứu của chúng tôi.

Từ khóa

#đa dạng sinh học #cấu thành cộng đồng #sản xuất sơ cấp #phát thải khí mê-tan #đầm nước ngọt

Tài liệu tham khảo

Al-Mufti MM, Sydes CL, Furness SB, Grime JP, Band SR (1977) A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology 65:759–791 Altor A, Mitsch W (2006) Methane flux from created riparian marshes: relationship to intermittent versus continuous inundation and emergent macrophytes. Ecological Engineering 28:224–234 Auclair AND, Bouchard A, Pajaczkowski J (1976) Plant standing crop and productivity relations in a Scripus-Equisetum wetland. Ecology 57:941–952 Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecological Letters 9:1146–1156 Bengtsson J, Engelhardt K, Giller P, Hobbie S, Lawrence D, Levine J, Vila M, Wolters V (2001) Slippin’ and slidin’ between the scales: the scaling components of biodiversity-ecosystem functioning relations. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspective. Oxford University Press, Oxford, pp 209–220, Chapter 18 Bodelier PLE, Frenzel P (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4 oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Applied and Environmental Microbiology, 65:1826. Boon PI, Sorrell BK (1995) Methane fluxes from an Australian floodplain wetland: the importance of emergent macrophytes. Journal of the North American Benthological Society 14:582–598 Bouchard V, Frey S, Gilbert J, Reed S (2007) Effects of macrophyte functional group richness on emergent freshwater functions. Ecology 88:2903–2914 Boutin C, Keddy PA (1993) A functional classification of wetland plants. Journal of Vegetation Science 4:591–600 Calhoun A, King G (1998) Characterization of root-associated methanotrophs from three freshwater macrophytes: Pontederia cordata, Sparganium eurycarpum, and Sagittaria latifolia. Applied and Environmental Microbiology 64:1099–1105 Callaway J, Sullivan G, Zedler J (2003) Species-rich plantings increase biomass and nitrogen accumulation in a wetland restoration experiment. Ecological Applications 13:1626–1639 Cardinale BJ, Nelson K, Palmer MA (2000) Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91:175–183 Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992 Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America 104:18123–18128. doi:10.1073/pnas.0709069104 Christensen TR, Panikov N, Mastepanov M, Joabsson A, Stewart A, Oquist M (2003) Biotic controls on CO2 and CH4 exchange in wetlands—a closed environment study. Biogeochemistry 64:337–354 Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant, Cell & Environment 26:17–36 Day RT, Keddy PA, McNeill J, Carleton T (1988) Fertility and disturbance gradients: a summary model for riverine marsh vegetation. Ecology 69:1044–1054 Dias A, Hoorens B, Van Logtestijn R, Vermaat J, Aerts R (2010) Plant species composition can be used as a proxy to predict methane emissions in peatland ecosystems after land-use changes. Ecosystems 13:526–538 Ding W, Cai Z, Tsuruta H (2005) Plant species effects on methane emissions from freshwater marshes. Atmospheric Environment 39:3199–3207 Engelhardt K, Ritchie M (2002) The effect of wetland species richness on wetland ecosystem processes. Ecology 83:2911–2924 Flombaum P, Sala OE (2008) Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proceedings of the National Academy of Sciences of the United States of America 105:6087–6090 Gerard G, Chanton J (1993) Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: defining upper limits. Biogeochemistry 23:79–97 Gilbert B, Frenzel P (1995) Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission. Biology and Fertility of Soils 20:93–100 Grace JB (2008) Structural equation modeling for observational studies. Journal of Wildlife Management 72:14–22 Grace JB, Anderson TM, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M (2007) Does species diversity limit productivity in natural grassland communities? Ecological Letters 10:680–689 Grime JP (2001) Plant strategies and vegetation processes and ecosystem properties, 2nd edn. John Wiley & Sons Ltd., Chichester Gross K, Cardinale BJ (2007) Does species richness drive community production or vice versa? Reconciling historical and contemporary paradigms in competitive communities. Am Nat, 170:207–220 Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190 Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Spehn E, Wacker L, Weilenmann M, Bazeley-White E, Beierkuhnlein C, Caldeira M (2007) Biodiversity and ecosystem functioning: reconciling the results of experimental and observational studies. Functional Ecology 21:998–1002 Hooper DU (1998) The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology, 79:704–719 Hooper DU, Chapin ES III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75:3–35 Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54:187–211 Joabsson A, Christensen TR (2001) Methane emissions from wetlands and their relationship with vascular plants: an arctic example. Global Change Biology 7:919–932 Kahmen A, Perner J, Audorff V, Weisser W, Buchmann N (2005) Effects of plant diversity, community composition and environmental parameters on productivity in montane European grasslands. Oecologia 142:606–615 Kankaala P, Kaeki T, Maekelae S, Ojala A, Pajunen H, Arvola L (2005) Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes. Global Change Biology 11:145–153 King G (1994) Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Applied and Environmental Microbiology, 60:3220–3227. Koelbener A, Ström L, Edwards P, Olde Venterink H (2010) Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil. Plant and Soil 326:147–158 Krüger M, Eller G, Conrad R, Frenzel P (2002) Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors. Global Change Biology 8:265–280 Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, U.K. Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37:25–50 Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91:3–17 Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J, Hector A, Hooper D, Huston M, Raffaelli D, Schmid B (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808 McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR Megonigal JP, Schlesinger WH (2002) Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles 16:1088–1098 Mittelbach G, Steiner C, Scheiner S, Gross K, Reynolds H, Waide R, Willig M, Dodson S, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82:2381–2396 Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology 96:884–893 Naeem S, Thompson L, Lawler S, Lawton J, Woodfin R (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737 Neubauer SC, Givler K, Valentine S, Megonigal JP (2005) Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. Ecology 86:3334–3344 Quested H, Eriksson O, Fortunel C, Garnier E (2007) Plant traits relate to whole-community litter quality and decomposition following land use change. Functional Ecology 21:1016–1026 R Development Core Team. (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org Roden EE, Wetzel RG (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnology and Oceanography 41:1733–1748 Schmid B (2002) The species richness–productivity controversy. Trends in Ecology & Evolution 17:113–114 Shannon C, Weaver W (1949) The mathematical theory of communication. The University of Illinois, Urbana Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368 Tilman D, Lehman C, Thomson K (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America 94:1857–1861 Van Der Nat F, Middelburg J (1998) Effects of two common macrophytes on methane dynamics in freshwater sediments. Biogeochemistry 43:79–104 Vitousek P, Mooney H, Lubchenco J, Melillo J (1997) Human domination of earth’s ecosystems. Science 277:494–499 Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999) The relationship between productivity and species richness. Annual Review of Ecology and Systematics 30:257–300 Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998) Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? Journal of Ecology 86:405–420 Whiting G, Chanton J (1993) Primary production control of methane emission from wetlands. Nature 364:794–795 Wilhm JL (1968) Use of biomass units in Shannon’s formula. Ecology 49:153–156 Wisheu IC, Keddy PA (1992) Competition and centrifugal organization of plant communities: theory and tests. Journal of Vegetation Science 3:147–156 Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New York Zuur A, Gende L, Ieno E, Walker N, Smith G, Saveliev A (2009) Mixed effects models and extensions in ecology with R. Springer, New York